Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 287
Question Number 76167 Answers: 3 Comments: 0
Question Number 76153 Answers: 0 Comments: 0
Question Number 76127 Answers: 0 Comments: 0
Question Number 76126 Answers: 1 Comments: 9
Question Number 76122 Answers: 4 Comments: 0
Question Number 76061 Answers: 1 Comments: 0
$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{13}{a}+\mathrm{13}{b}+\mathrm{2}{c}}{\mathrm{2}{a}+\mathrm{2}{b}}+\frac{\mathrm{24}{a}−{b}+\mathrm{13}{c}}{\mathrm{2}{b}+\mathrm{2}{c}}+\frac{−{a}+\mathrm{24}{b}+\mathrm{13}{c}}{\mathrm{2}{a}+\mathrm{2}{c}}? \\ $$$$\left({a},{b},{c}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}.\right) \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{nobody}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}. \\ $$
Question Number 76048 Answers: 2 Comments: 0
$$\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$
Question Number 76009 Answers: 1 Comments: 0
$${hiw}\:{do}\:{i}\:{solve} \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x}? \\ $$
Question Number 76003 Answers: 1 Comments: 0
$$\mathrm{22}+\mathrm{2} \\ $$
Question Number 75990 Answers: 0 Comments: 0
Question Number 75985 Answers: 1 Comments: 0
Question Number 75933 Answers: 0 Comments: 2
$${solve}\:{the}\:{inequality} \\ $$$${a}.\:\:{ln}\left(\mathrm{2}{x}−{e}\right)\:>\mathrm{1} \\ $$$${b}.\:\left({lnx}\right)^{\mathrm{2}} −{lnx}−\mathrm{6}<\mathrm{0} \\ $$$${c}.\:\mid{x}\mid\:+\:\mid{x}+\mathrm{2}\mid\:\geqslant\:\mathrm{2} \\ $$$${d}.\:\mid\mathrm{2}{x}−\mathrm{5}\mid\:+\:\mid{x}\:+\mathrm{2}\mid\:>\:\mathrm{7} \\ $$
Question Number 75932 Answers: 1 Comments: 1
$${solve}\:{for}\:{x}\:{the}\:{following} \\ $$$${a}.\:\mid{x}\mid\:+\:\mathrm{3}{x}\:−\mathrm{4}\:=\mathrm{0} \\ $$$${b}.\:\:\mid{x}\mid−\mathrm{1}\:=\:\mathrm{0} \\ $$$${c}.\:{x}^{\mathrm{2}} +\mathrm{3}\mid{x}\mid\:+\mathrm{2}\:=\mathrm{0} \\ $$$$ \\ $$
Question Number 75916 Answers: 0 Comments: 1
$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{36}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},\mathrm{3},−\mathrm{6}. \\ $$
Question Number 75913 Answers: 0 Comments: 1
$${x}^{\mathrm{3}} −\mathrm{7}{x}+\mathrm{6}=\mathrm{0} \\ $$$${prove}\:{that}\:{x}=\mathrm{2},−\mathrm{3},\mathrm{1}\:. \\ $$
Question Number 75918 Answers: 1 Comments: 0
Question Number 75883 Answers: 0 Comments: 2
$$\mathrm{If}\:\:\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:+\:\mathrm{c}^{\mathrm{4}} \:+\:\mathrm{d}^{\mathrm{4}} \:\:\:=\:\:\:\mathrm{16} \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} \:+\:\mathrm{d}^{\mathrm{5}} \:\:\:\leqslant\:\:\:\mathrm{32} \\ $$
Question Number 75845 Answers: 1 Comments: 2
$$\begin{cases}{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{yz}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{xz}}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{z}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}. \\ $$
Question Number 75828 Answers: 1 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{10}^{{n}} } \\ $$
Question Number 75846 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{sin}}^{\mathrm{5}} \boldsymbol{\mathrm{x}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{sinx}}=\mathrm{1}\:\:\:\:\:\:\:\:,\:\:\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{2}\boldsymbol{\pi}\right] \\ $$
Question Number 75778 Answers: 1 Comments: 0
$${if}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={p},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ={q}, \\ $$$${find}\:{x}^{{n}} +{y}^{{n}} \:{in}\:{terms}\:{of}\:{p},\:{q}\:{and}\:{n}. \\ $$$$\left({n}\geqslant\mathrm{4}\right) \\ $$
Question Number 75756 Answers: 0 Comments: 1
$$\underset{{x}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right) \\ $$
Question Number 75753 Answers: 1 Comments: 0
$$\left(\frac{\left(\mathrm{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{x}^{−\mathrm{1}/\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{2}}{\left(\mathrm{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{x}^{−\mathrm{1}/\mathrm{3}} \right)^{\mathrm{2}} +\mathrm{2}}−\mathrm{x}\right)^{\mathrm{3}/\mathrm{4}} \\ $$
Question Number 75751 Answers: 0 Comments: 0
Question Number 75739 Answers: 1 Comments: 1
Question Number 75681 Answers: 1 Comments: 8
Pg 282 Pg 283 Pg 284 Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291
Terms of Service
Privacy Policy
Contact: info@tinkutara.com