Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 287

Question Number 76431    Answers: 1   Comments: 1

how to find x^(2048) + x^(−2048) if x+x^(−1) =(((√5)+1)/2)

$${how}\:{to}\:{find}\:{x}^{\mathrm{2048}} \:+\:{x}^{−\mathrm{2048}} \\ $$$${if}\:\:{x}+{x}^{−\mathrm{1}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 76428    Answers: 2   Comments: 0

Question Number 76407    Answers: 0   Comments: 0

Question Number 76397    Answers: 0   Comments: 2

solve for z∈C [z=a+bi; z^ =a−bi; r∈R] (√(r^2 −z^2 ))=z^ (√(r^2 +z^2 ))=z^

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\left[{z}={a}+{b}\mathrm{i};\:\bar {{z}}={a}−{b}\mathrm{i};\:{r}\in\mathbb{R}\right] \\ $$$$\sqrt{{r}^{\mathrm{2}} −{z}^{\mathrm{2}} }=\bar {{z}} \\ $$$$\sqrt{{r}^{\mathrm{2}} +{z}^{\mathrm{2}} }=\bar {{z}} \\ $$

Question Number 76340    Answers: 3   Comments: 1

Question Number 76307    Answers: 1   Comments: 0

Question Number 76290    Answers: 1   Comments: 1

how to prove x^y +y^x ≥1 , x,y ∈R x,y > 0

$$\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{x}^{\mathrm{y}} \:+\mathrm{y}^{\mathrm{x}} \:\geqslant\mathrm{1}\:,\:\mathrm{x},\mathrm{y}\:\in\mathbb{R} \\ $$$$\mathrm{x},\mathrm{y}\:>\:\mathrm{0} \\ $$

Question Number 76277    Answers: 1   Comments: 0

Question Number 76246    Answers: 2   Comments: 0

how to solving x^3 +y^(3 ) =4 and x×y =1?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{y}^{\mathrm{3}\:} \:=\mathrm{4}\:\mathrm{and}\: \\ $$$$\mathrm{x}×\mathrm{y}\:=\mathrm{1}? \\ $$

Question Number 76214    Answers: 3   Comments: 0

x^2 +2x−9+(9/((x+1)^2 ))=0 please

$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$

Question Number 76213    Answers: 1   Comments: 0

((1/(64))×5^(−3) )^(−(1/3))

$$\left(\frac{\mathrm{1}}{\mathrm{64}}×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 76207    Answers: 4   Comments: 0

if a_1 =1 and a_(n+1) =3a_n +n^2 find a_n =?

$${if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{and}\:{a}_{{n}+\mathrm{1}} =\mathrm{3}{a}_{{n}} +{n}^{\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 76176    Answers: 0   Comments: 4

Question Number 76171    Answers: 0   Comments: 0

Question Number 76169    Answers: 2   Comments: 0

Question Number 76167    Answers: 3   Comments: 0

Question Number 76153    Answers: 0   Comments: 0

Question Number 76127    Answers: 0   Comments: 0

Question Number 76126    Answers: 1   Comments: 9

Question Number 76122    Answers: 4   Comments: 0

Question Number 76061    Answers: 1   Comments: 0

What′s the minimum value of ((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))? (a,b,c are positive numbers.) I think nobody can solve this.

$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{13}{a}+\mathrm{13}{b}+\mathrm{2}{c}}{\mathrm{2}{a}+\mathrm{2}{b}}+\frac{\mathrm{24}{a}−{b}+\mathrm{13}{c}}{\mathrm{2}{b}+\mathrm{2}{c}}+\frac{−{a}+\mathrm{24}{b}+\mathrm{13}{c}}{\mathrm{2}{a}+\mathrm{2}{c}}? \\ $$$$\left({a},{b},{c}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}.\right) \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{nobody}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}. \\ $$

Question Number 76048    Answers: 2   Comments: 0

∫e^x^2 dx

$$\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$

Question Number 76009    Answers: 1   Comments: 0

hiw do i solve 2^x = 4x?

$${hiw}\:{do}\:{i}\:{solve} \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x}? \\ $$

Question Number 76003    Answers: 1   Comments: 0

22+2

$$\mathrm{22}+\mathrm{2} \\ $$

Question Number 75990    Answers: 0   Comments: 0

Question Number 75985    Answers: 1   Comments: 0

  Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com