Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 274

Question Number 84404    Answers: 0   Comments: 1

(x^2 −2)(x^2 −4)(x^2 −6)...(x^2 −2020)=1 x=?

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6}\right)...\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$

Question Number 84394    Answers: 0   Comments: 2

find the solution ((2x)/(x−2)) ≤ ∣x−3∣

$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\frac{\mathrm{2x}}{\mathrm{x}−\mathrm{2}}\:\leqslant\:\mid\mathrm{x}−\mathrm{3}\mid\: \\ $$

Question Number 84393    Answers: 0   Comments: 0

if x^x .y^y .z^z =x^y .y^z .z^x =x^z .y^x .z^y such that x, y and z are positive intigers greater than 1 ,what is the value of xyz and x+y+z ?

$${if}\:{x}^{{x}} .{y}^{{y}} .{z}^{{z}} ={x}^{{y}} .{y}^{{z}} .{z}^{{x}} ={x}^{{z}} .{y}^{{x}} .{z}^{{y}} \:{such}\:{that}\:{x},\:{y}\:{and}\:{z}\: \\ $$$${are}\:{positive}\:{intigers}\:{greater}\:{than}\:\mathrm{1} \\ $$$$,{what}\:{is}\:{the}\:{value}\:{of}\:{xyz}\:{and}\:{x}+{y}+{z}\:? \\ $$

Question Number 84384    Answers: 0   Comments: 3

[x]^x =2(√2) , ∀x>0

$$\left[{x}\right]^{{x}} =\mathrm{2}\sqrt{\mathrm{2}}\:\:,\:\forall{x}>\mathrm{0} \\ $$

Question Number 84370    Answers: 2   Comments: 0

1.) ∣x∣ +∣x+2∣ <5 2.) ∣x∣ +∣x+2∣ + ∣2−x∣ ≤8

$$\left.\mathrm{1}.\right)\:\mid{x}\mid\:+\mid{x}+\mathrm{2}\mid\:<\mathrm{5} \\ $$$$\left.\mathrm{2}.\right)\:\mid{x}\mid\:+\mid{x}+\mathrm{2}\mid\:+\:\mid\mathrm{2}−{x}\mid\:\leqslant\mathrm{8} \\ $$

Question Number 84328    Answers: 0   Comments: 0

(3/7)×(1/2)ln[((u−1)/(u+1))]−(1/2)ln[u^2 −1]

$$\frac{\mathrm{3}}{\mathrm{7}}×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left[\frac{\mathrm{u}−\mathrm{1}}{\mathrm{u}+\mathrm{1}}\right]−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left[\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right] \\ $$

Question Number 84315    Answers: 1   Comments: 0

∫xy dx

$$\int{xy}\:{dx} \\ $$

Question Number 84293    Answers: 1   Comments: 0

solve in R x^([x]) +x^(2−[x]) =x^2 +1

$${solve}\:{in}\:{R} \\ $$$${x}^{\left[{x}\right]} +{x}^{\mathrm{2}−\left[{x}\right]} ={x}^{\mathrm{2}} +\mathrm{1} \\ $$

Question Number 84188    Answers: 0   Comments: 4

if 2x+3y = 2020? find maximum value 3x+2y for x and natural number

$$\mathrm{if}\:\mathrm{2x}+\mathrm{3y}\:=\:\mathrm{2020}? \\ $$$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{3x}+\mathrm{2y}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{natural} \\ $$$$\mathrm{number} \\ $$

Question Number 84182    Answers: 2   Comments: 0

Find the number of solutions for positive integers (x,y,z) satisfying x+2y+3z=n.

$${Find}\:{the}\:{number}\:{of}\:{solutions}\:{for} \\ $$$${positive}\:{integers}\:\left({x},{y},{z}\right)\:{satisfying} \\ $$$$\boldsymbol{{x}}+\mathrm{2}\boldsymbol{{y}}+\mathrm{3}\boldsymbol{{z}}=\boldsymbol{{n}}. \\ $$

Question Number 84126    Answers: 1   Comments: 0

∫((5−x)/(1+(√((x−4)))))dx

$$\int\frac{\mathrm{5}−{x}}{\mathrm{1}+\sqrt{\left({x}−\mathrm{4}\right)}}\boldsymbol{{dx}} \\ $$

Question Number 84109    Answers: 1   Comments: 2

Question Number 84047    Answers: 2   Comments: 0

how many natural solution are there for x^2 − y ! = 2019 .

$$\mathrm{how}\:\mathrm{many}\: \\ $$$$\mathrm{natural}\:\mathrm{solution}\:\mathrm{are}\:\mathrm{there}\:\mathrm{for}\: \\ $$$${x}^{\mathrm{2}} \:−\:{y}\:!\:=\:\mathrm{2019}\:. \\ $$

Question Number 84014    Answers: 0   Comments: 1

find the no. of positivve integral solutions of x+y+2z=89 x>10 y>20 z>2

$${find}\:{the}\:{no}.\:{of}\:{positivve} \\ $$$${integral}\:{solutions}\:{of} \\ $$$${x}+{y}+\mathrm{2}{z}=\mathrm{89} \\ $$$${x}>\mathrm{10} \\ $$$${y}>\mathrm{20} \\ $$$${z}>\mathrm{2} \\ $$

Question Number 84002    Answers: 0   Comments: 0

((sin(x))/(√(2sin^2 (x)+cos^2 (x)))) +(1/(√2))=csc(x)(√(2sin^2 (x)+cos^2 (x))) show that x={(π/2)+2πn} and x={cos^(−1) ((√3))−π+2πn} and x={−cos^(−1) ((√3))+2πn}

$$\frac{{sin}\left({x}\right)}{\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}={csc}\left({x}\right)\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)} \\ $$$${show}\:{that} \\ $$$${x}=\left\{\frac{\pi}{\mathrm{2}}+\mathrm{2}\pi{n}\right\}\:{and}\:{x}=\left\{{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\right)−\pi+\mathrm{2}\pi{n}\right\} \\ $$$${and}\:{x}=\left\{−{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\right)+\mathrm{2}\pi{n}\right\} \\ $$$$ \\ $$

Question Number 84005    Answers: 2   Comments: 4

find atleast 7 solutions of the equation. 900x+7689y=109876 CAN ANYONE SOLVE THIS now lets find 7 integral solutions

$${find}\:{atleast}\:\mathrm{7}\:{solutions} \\ $$$${of}\:{the}\:{equation}. \\ $$$$\mathrm{900}{x}+\mathrm{7689}{y}=\mathrm{109876} \\ $$$${CAN}\:{ANYONE}\:{SOLVE} \\ $$$${THIS} \\ $$$${now}\:{lets}\:{find}\:\mathrm{7}\:{integral} \\ $$$${solutions} \\ $$

Question Number 83941    Answers: 1   Comments: 0

If ((2 ))^(1/3) + (4)^(1/(3 )) + ((8 ))^(1/(3 )) = x then x^3 −6x^2 +6x+6 = ?

$$\mathrm{If}\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{4}}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{8}\:}\:=\:\mathrm{x}\: \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{3}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{6}\:=\:? \\ $$

Question Number 83931    Answers: 1   Comments: 1

(1/(((√1)+(√2))((1)^(1/(4 )) +(2)^(1/(4 )) ))) + (1/(((√2)+(√3))((2)^(1/( 4)) +(3)^(1/(4 )) ))) + (1/(((√3)+(√4))((3)^(1/(4 )) +(4)^(1/(4 )) ))) + ... + (1/(((√(255))+(√(256)))(((255))^(1/(4 )) +((256))^(1/(4 )) ))) = ...

$$\frac{\mathrm{1}}{\left(\sqrt{\mathrm{1}}+\sqrt{\mathrm{2}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{1}}+\sqrt[{\mathrm{4}\:}]{\mathrm{2}}\right)}\:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)\left(\sqrt[{\:\mathrm{4}}]{\mathrm{2}}+\sqrt[{\mathrm{4}\:}]{\mathrm{3}}\right)}\:+ \\ $$$$\frac{\mathrm{1}}{\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{3}}+\sqrt[{\mathrm{4}\:}]{\mathrm{4}}\right)}\:+\:...\:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{255}}+\sqrt{\mathrm{256}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{255}}+\sqrt[{\mathrm{4}\:}]{\mathrm{256}}\right)} \\ $$$$=\:...\: \\ $$

Question Number 83910    Answers: 2   Comments: 1

find all 6 digit numbers which are not only palindrome but also divisible by 495.

$$\mathrm{find}\:\mathrm{all}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{only}\:\mathrm{palindrome}\:\mathrm{but}\:\mathrm{also}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{495}. \\ $$

Question Number 83874    Answers: 1   Comments: 1

Question Number 83871    Answers: 0   Comments: 4

If equation { (((√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))=10)),((x+2y= 5z)) :} has solution is (a,b,c). find a+2b+3c

$$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\ $$

Question Number 83834    Answers: 1   Comments: 2

Question Number 83824    Answers: 2   Comments: 1

Question Number 83822    Answers: 1   Comments: 1

Question Number 83791    Answers: 2   Comments: 2

Let x, y are two different real numbers satisfy the equation (√(y+4)) = x−4 and (√(x+4)) = y−4. The value of x^3 +y^3 mod(x^3 y^3 ) is

$$\mathrm{Let}\:\mathrm{x},\:\mathrm{y}\:\mathrm{are}\:\mathrm{two}\:\mathrm{different}\:\mathrm{real} \\ $$$$\mathrm{numbers}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\sqrt{\mathrm{y}+\mathrm{4}}\:=\:\mathrm{x}−\mathrm{4}\:\mathrm{and}\:\sqrt{\mathrm{x}+\mathrm{4}}\:=\:\mathrm{y}−\mathrm{4}. \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \:\mathrm{mod}\left(\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} \right)\:\mathrm{is} \\ $$

Question Number 83787    Answers: 1   Comments: 0

find the value of abc if (√(2+(√(2^2 +(√(2^3 +2^4 +(√(...)))))))) = (((√a)+(√b))/c)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{abc}\:\mathrm{if}\: \\ $$$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}^{\mathrm{2}} +\sqrt{\mathrm{2}^{\mathrm{3}} +\mathrm{2}^{\mathrm{4}} +\sqrt{...}}}}\:=\:\frac{\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}}{\mathrm{c}} \\ $$

  Pg 269      Pg 270      Pg 271      Pg 272      Pg 273      Pg 274      Pg 275      Pg 276      Pg 277      Pg 278   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com