Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 274

Question Number 88160    Answers: 2   Comments: 1

solve : x^2 = 3x + 6y ; xy = 5x + 4y

$${solve}\::\:{x}^{\mathrm{2}} \:=\:\mathrm{3}{x}\:+\:\mathrm{6}{y}\:;\:{xy}\:=\:\mathrm{5}{x}\:+\:\mathrm{4}{y} \\ $$

Question Number 88141    Answers: 1   Comments: 0

Question Number 88137    Answers: 1   Comments: 2

Mr mjs x, 3,7,13,27,33,y find x & y ? any formula to generally?

$${Mr}\:{mjs}\: \\ $$$${x},\:\mathrm{3},\mathrm{7},\mathrm{13},\mathrm{27},\mathrm{33},{y} \\ $$$${find}\:{x}\:\&\:{y}\:?\:{any}\:{formula} \\ $$$${to}\:{generally}? \\ $$

Question Number 88128    Answers: 1   Comments: 0

given 27^a = 64^b = 216^c = 72 find ((2020abc)/(3ab+3ac+3bc)) + ((ab+ac+bc)/(2020abc))

$${given}\:\mathrm{27}^{{a}} \:=\:\mathrm{64}^{{b}} \:=\:\mathrm{216}^{{c}} \:=\:\mathrm{72} \\ $$$${find}\:\frac{\mathrm{2020}{abc}}{\mathrm{3}{ab}+\mathrm{3}{ac}+\mathrm{3}{bc}}\:+\:\frac{{ab}+{ac}+{bc}}{\mathrm{2020}{abc}} \\ $$

Question Number 88088    Answers: 0   Comments: 0

Question Number 88067    Answers: 1   Comments: 0

Question Number 88040    Answers: 0   Comments: 2

Find the max and min of function ((a+bsin x)/(b+asin x)) where b>a>0 in the interval 0≤x≤2π.sketch a=4 and b=5

$${Find}\:{the}\:{max}\:{and}\:{min} \\ $$$${of}\:{function} \\ $$$$\frac{{a}+{b}\mathrm{sin}\:{x}}{{b}+{a}\mathrm{sin}\:{x}} \\ $$$${where}\:{b}>{a}>\mathrm{0}\:{in}\:{the}\: \\ $$$${interval}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi.{sketch} \\ $$$${a}=\mathrm{4}\:{and}\:{b}=\mathrm{5} \\ $$

Question Number 88039    Answers: 1   Comments: 0

Obtain the first four term of the expansion (4−x)^(1/3) when (1)∣x∣<1 (ii)∣x∣>1

$${Obtain}\:{the}\:{first}\:{four} \\ $$$${term}\:{of}\:{the}\:{expansion} \\ $$$$\left(\mathrm{4}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {when} \\ $$$$\left(\mathrm{1}\right)\mid{x}\mid<\mathrm{1} \\ $$$$\left({ii}\right)\mid{x}\mid>\mathrm{1} \\ $$

Question Number 88014    Answers: 2   Comments: 0

If there is no second′s hand on a clock and the minute and hour hand move in continuous fashion, then exactly at what time between 02:10 and 02:15 does the position of the two hands exactly coincide?

$${If}\:{there}\:{is}\:{no}\:{second}'{s}\:{hand}\:{on} \\ $$$${a}\:{clock}\:{and}\:{the}\:{minute}\:{and}\:{hour} \\ $$$${hand}\:{move}\:{in}\:{continuous}\:{fashion}, \\ $$$${then}\:{exactly}\:{at}\:{what}\:{time}\:{between} \\ $$$$\mathrm{02}:\mathrm{10}\:\:{and}\:\mathrm{02}:\mathrm{15}\:{does}\:{the}\:{position} \\ $$$${of}\:{the}\:{two}\:{hands}\:{exactly}\:{coincide}? \\ $$

Question Number 87988    Answers: 0   Comments: 0

solve the PDE 1−Z=px+py−q(√(pq)) 2−Z=px+qy+sin(p+q) 3−p(1+q^2 )=q(Z−a) 4−Z=xyp^2

$${solve}\:{the}\:{PDE} \\ $$$$\mathrm{1}−{Z}={px}+{py}−{q}\sqrt{{pq}} \\ $$$$\mathrm{2}−{Z}={px}+{qy}+{sin}\left({p}+{q}\right) \\ $$$$\mathrm{3}−{p}\left(\mathrm{1}+{q}^{\mathrm{2}} \right)={q}\left({Z}−{a}\right) \\ $$$$\mathrm{4}−{Z}={xyp}^{\mathrm{2}} \\ $$

Question Number 87886    Answers: 1   Comments: 2

Question Number 87817    Answers: 1   Comments: 3

f(((x−3)/(x+1)))+f(((x+3)/(x−1)))=x find f(x)

$${f}\left(\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}\right)+{f}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)={x} \\ $$$${find}\:{f}\left({x}\right) \\ $$

Question Number 87755    Answers: 0   Comments: 2

f(((x−3)/(x+1))) + f(((x+3)/(1−x))) = x find f(x)

$$\mathrm{f}\left(\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$

Question Number 87737    Answers: 1   Comments: 0

solve sin((π/([(([x])/4)])))=(1/2)

$${solve} \\ $$$${sin}\left(\frac{\pi}{\left[\frac{\left[{x}\right]}{\mathrm{4}}\right]}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 87733    Answers: 1   Comments: 2

Question Number 87726    Answers: 0   Comments: 0

Question Number 87724    Answers: 1   Comments: 0

solve the equation sin^(−1) (cos ⌊x⌋)=1

$${solve}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{cos}}\:\lfloor\boldsymbol{{x}}\rfloor\right)=\mathrm{1} \\ $$

Question Number 87656    Answers: 1   Comments: 3

((1+sin((1/8))π+i cos((1/8))π)/(1+sin((1/8))π−i cos((1/8))π))=?

$$\frac{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi+{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi−{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}=? \\ $$

Question Number 87625    Answers: 2   Comments: 0

if f(x)=sin^(−1) (cos[x]) find Df and Rf the function notice/ [...] is floor

$${if}\:{f}\left({x}\right)={sin}^{−\mathrm{1}} \left({cos}\left[{x}\right]\right) \\ $$$${find}\:{Df}\:{and}\:\:{Rf}\:{the}\:{function} \\ $$$$ \\ $$$${notice}/\:\left[...\right]\:{is}\:{floor} \\ $$

Question Number 87598    Answers: 0   Comments: 1

Question Number 87586    Answers: 1   Comments: 0

l.c.m of two numbers is p^2 q^4 r^4 p q r are primes.find the possible no. of pairs

$${l}.{c}.{m}\:{of}\:{two}\:{numbers}\:{is}\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} \:{p}\:{q}\:{r}\:{are} \\ $$$${primes}.{find}\:{the}\:{possible}\:{no}.\:{of}\:{pairs} \\ $$

Question Number 87581    Answers: 2   Comments: 1

Question Number 87553    Answers: 1   Comments: 0

Question Number 87533    Answers: 3   Comments: 2

Question Number 87492    Answers: 1   Comments: 0

((2+3^2 )/(1!+2!+3!+4!))+((3+4^2 )/(2!+3!+4!+5!))+...+((2013+2014^2 )/(2012!+2013!+2014!+2015!))

$$\frac{\mathrm{2}+\mathrm{3}^{\mathrm{2}} }{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+\frac{\mathrm{3}+\mathrm{4}^{\mathrm{2}} }{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}+...+\frac{\mathrm{2013}+\mathrm{2014}^{\mathrm{2}} }{\mathrm{2012}!+\mathrm{2013}!+\mathrm{2014}!+\mathrm{2015}!} \\ $$

Question Number 87398    Answers: 0   Comments: 5

dear mr w a_(n+2) = a_(n+1) − a_n find a_n

$$\mathrm{dear}\:\mathrm{mr}\:\mathrm{w} \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{2}} \:=\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:−\:\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{find}\:\mathrm{a}_{\mathrm{n}} \\ $$

  Pg 269      Pg 270      Pg 271      Pg 272      Pg 273      Pg 274      Pg 275      Pg 276      Pg 277      Pg 278   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com