Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 274
Question Number 88160 Answers: 2 Comments: 1
$${solve}\::\:{x}^{\mathrm{2}} \:=\:\mathrm{3}{x}\:+\:\mathrm{6}{y}\:;\:{xy}\:=\:\mathrm{5}{x}\:+\:\mathrm{4}{y} \\ $$
Question Number 88141 Answers: 1 Comments: 0
Question Number 88137 Answers: 1 Comments: 2
$${Mr}\:{mjs}\: \\ $$$${x},\:\mathrm{3},\mathrm{7},\mathrm{13},\mathrm{27},\mathrm{33},{y} \\ $$$${find}\:{x}\:\&\:{y}\:?\:{any}\:{formula} \\ $$$${to}\:{generally}? \\ $$
Question Number 88128 Answers: 1 Comments: 0
$${given}\:\mathrm{27}^{{a}} \:=\:\mathrm{64}^{{b}} \:=\:\mathrm{216}^{{c}} \:=\:\mathrm{72} \\ $$$${find}\:\frac{\mathrm{2020}{abc}}{\mathrm{3}{ab}+\mathrm{3}{ac}+\mathrm{3}{bc}}\:+\:\frac{{ab}+{ac}+{bc}}{\mathrm{2020}{abc}} \\ $$
Question Number 88088 Answers: 0 Comments: 0
Question Number 88067 Answers: 1 Comments: 0
Question Number 88040 Answers: 0 Comments: 2
$${Find}\:{the}\:{max}\:{and}\:{min} \\ $$$${of}\:{function} \\ $$$$\frac{{a}+{b}\mathrm{sin}\:{x}}{{b}+{a}\mathrm{sin}\:{x}} \\ $$$${where}\:{b}>{a}>\mathrm{0}\:{in}\:{the}\: \\ $$$${interval}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi.{sketch} \\ $$$${a}=\mathrm{4}\:{and}\:{b}=\mathrm{5} \\ $$
Question Number 88039 Answers: 1 Comments: 0
$${Obtain}\:{the}\:{first}\:{four} \\ $$$${term}\:{of}\:{the}\:{expansion} \\ $$$$\left(\mathrm{4}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {when} \\ $$$$\left(\mathrm{1}\right)\mid{x}\mid<\mathrm{1} \\ $$$$\left({ii}\right)\mid{x}\mid>\mathrm{1} \\ $$
Question Number 88014 Answers: 2 Comments: 0
$${If}\:{there}\:{is}\:{no}\:{second}'{s}\:{hand}\:{on} \\ $$$${a}\:{clock}\:{and}\:{the}\:{minute}\:{and}\:{hour} \\ $$$${hand}\:{move}\:{in}\:{continuous}\:{fashion}, \\ $$$${then}\:{exactly}\:{at}\:{what}\:{time}\:{between} \\ $$$$\mathrm{02}:\mathrm{10}\:\:{and}\:\mathrm{02}:\mathrm{15}\:{does}\:{the}\:{position} \\ $$$${of}\:{the}\:{two}\:{hands}\:{exactly}\:{coincide}? \\ $$
Question Number 87988 Answers: 0 Comments: 0
$${solve}\:{the}\:{PDE} \\ $$$$\mathrm{1}−{Z}={px}+{py}−{q}\sqrt{{pq}} \\ $$$$\mathrm{2}−{Z}={px}+{qy}+{sin}\left({p}+{q}\right) \\ $$$$\mathrm{3}−{p}\left(\mathrm{1}+{q}^{\mathrm{2}} \right)={q}\left({Z}−{a}\right) \\ $$$$\mathrm{4}−{Z}={xyp}^{\mathrm{2}} \\ $$
Question Number 87886 Answers: 1 Comments: 2
Question Number 87817 Answers: 1 Comments: 3
$${f}\left(\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}\right)+{f}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)={x} \\ $$$${find}\:{f}\left({x}\right) \\ $$
Question Number 87755 Answers: 0 Comments: 2
$$\mathrm{f}\left(\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$
Question Number 87737 Answers: 1 Comments: 0
$${solve} \\ $$$${sin}\left(\frac{\pi}{\left[\frac{\left[{x}\right]}{\mathrm{4}}\right]}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 87733 Answers: 1 Comments: 2
Question Number 87726 Answers: 0 Comments: 0
Question Number 87724 Answers: 1 Comments: 0
$${solve}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{cos}}\:\lfloor\boldsymbol{{x}}\rfloor\right)=\mathrm{1} \\ $$
Question Number 87656 Answers: 1 Comments: 3
$$\frac{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi+{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}{\mathrm{1}+{sin}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi−{i}\:{cos}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)\pi}=? \\ $$
Question Number 87625 Answers: 2 Comments: 0
$${if}\:{f}\left({x}\right)={sin}^{−\mathrm{1}} \left({cos}\left[{x}\right]\right) \\ $$$${find}\:{Df}\:{and}\:\:{Rf}\:{the}\:{function} \\ $$$$ \\ $$$${notice}/\:\left[...\right]\:{is}\:{floor} \\ $$
Question Number 87598 Answers: 0 Comments: 1
Question Number 87586 Answers: 1 Comments: 0
$${l}.{c}.{m}\:{of}\:{two}\:{numbers}\:{is}\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} \:{p}\:{q}\:{r}\:{are} \\ $$$${primes}.{find}\:{the}\:{possible}\:{no}.\:{of}\:{pairs} \\ $$
Question Number 87581 Answers: 2 Comments: 1
Question Number 87553 Answers: 1 Comments: 0
Question Number 87533 Answers: 3 Comments: 2
Question Number 87492 Answers: 1 Comments: 0
$$\frac{\mathrm{2}+\mathrm{3}^{\mathrm{2}} }{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+\frac{\mathrm{3}+\mathrm{4}^{\mathrm{2}} }{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}+...+\frac{\mathrm{2013}+\mathrm{2014}^{\mathrm{2}} }{\mathrm{2012}!+\mathrm{2013}!+\mathrm{2014}!+\mathrm{2015}!} \\ $$
Question Number 87398 Answers: 0 Comments: 5
$$\mathrm{dear}\:\mathrm{mr}\:\mathrm{w} \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{2}} \:=\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:−\:\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{find}\:\mathrm{a}_{\mathrm{n}} \\ $$
Pg 269 Pg 270 Pg 271 Pg 272 Pg 273 Pg 274 Pg 275 Pg 276 Pg 277 Pg 278
Terms of Service
Privacy Policy
Contact: info@tinkutara.com