Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 269

Question Number 78351    Answers: 2   Comments: 1

Let a,b,c ∈ R^+ and (a+b)(b+c) = 1 , where 0 <b≤ 1 . Prove that ∣a−b∣∣b−c∣ ≥ ((∣(√a)−(√b)∣∣(√b)−(√c)∣)/2) .

$$\mathrm{Let}\:\:{a},{b},{c}\:\in\:\mathrm{R}^{+} \:\:\mathrm{and}\:\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{1}\:,\:\mathrm{where}\:\:\mathrm{0}\:<{b}\leqslant\:\mathrm{1}\:. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\frac{\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid}{\mathrm{2}}\:. \\ $$

Question Number 78353    Answers: 0   Comments: 0

Question Number 78340    Answers: 2   Comments: 0

Let a,b,c > 0 and c^2 = ((ab+bc+ca)/3) . Prove that ((a^3 +b^3 −2c^3 )/(a^3 +b^3 +c^3 )) ≤ 3(((a^2 +b^2 −2c^2 )/(a^2 +b^2 +c^2 )))

$$\mathrm{Let}\:\:{a},{b},{c}\:>\:\mathrm{0}\:\:\mathrm{and}\:\:{c}^{\mathrm{2}} \:=\:\frac{{ab}+{bc}+{ca}}{\mathrm{3}}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} −\mathrm{2}{c}^{\mathrm{3}} }{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\:\leqslant\:\mathrm{3}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\right) \\ $$

Question Number 78335    Answers: 1   Comments: 0

find the solution of (x/((x−2)^3 +(x−3)^3 −1)) ≥ 0

$${find}\:{the}\:{solution}\:{of} \\ $$$$\frac{{x}}{\left({x}−\mathrm{2}\right)^{\mathrm{3}} +\left({x}−\mathrm{3}\right)^{\mathrm{3}} −\mathrm{1}}\:\geqslant\:\mathrm{0} \\ $$

Question Number 78319    Answers: 0   Comments: 1

57+6h=16h−33

$$\mathrm{57}+\mathrm{6}{h}=\mathrm{16}{h}−\mathrm{33} \\ $$

Question Number 78306    Answers: 1   Comments: 0

The sum of age of Hamadou his wife and theirs son is 100. n years ago the wife had the quadruple of his son′s age and Hamadou was 6 time older than his son. Determine theirs ages. i want that you help me to found equations. i found the first : x+y+z=100 please help me for the rest.

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{age}\:\mathrm{of}\:\mathrm{Hamadou}\:\:\: \\ $$$$\mathrm{his}\:\mathrm{wife}\:\mathrm{and}\:\mathrm{theirs}\:\mathrm{son}\:\mathrm{is}\:\mathrm{100}. \\ $$$$\mathrm{n}\:\mathrm{years}\:\mathrm{ago}\:\mathrm{the}\:\mathrm{wife}\:\mathrm{had}\:\mathrm{the}\: \\ $$$$\mathrm{quadruple}\:\mathrm{of}\:\mathrm{his}\:\mathrm{son}'\mathrm{s}\:\mathrm{age}\:\mathrm{and}\: \\ $$$$\mathrm{Hamadou}\:\mathrm{was}\:\mathrm{6}\:\mathrm{time}\:\mathrm{older}\:\mathrm{than} \\ $$$$\mathrm{his}\:\mathrm{son}. \\ $$$$\mathrm{Determine}\:\mathrm{theirs}\:\mathrm{ages}. \\ $$$$ \\ $$$$\mathrm{i}\:\mathrm{want}\:\mathrm{that}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{found} \\ $$$$\mathrm{equations}. \\ $$$$\mathrm{i}\:\mathrm{found}\:\mathrm{the}\:\mathrm{first}\::\:{x}+{y}+{z}=\mathrm{100} \\ $$$${please}\:{help}\:{me}\:{for}\:{the}\:{rest}. \\ $$

Question Number 78233    Answers: 0   Comments: 8

given 5x+22y=18 find for x,y integer

$${given}\:\mathrm{5}{x}+\mathrm{22}{y}=\mathrm{18} \\ $$$${find}\:{for}\:{x},{y}\:{integer} \\ $$

Question Number 78177    Answers: 1   Comments: 10

what equation of ellips with F_1 (1,2) F_2 (3,4) and a = (√3)

$${what}\:{equation}\:{of}\:{ellips} \\ $$$${with}\:{F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{2}\right)\:{F}_{\mathrm{2}} \left(\mathrm{3},\mathrm{4}\right)\:{and}\:{a}\:=\:\sqrt{\mathrm{3}} \\ $$

Question Number 78168    Answers: 0   Comments: 6

Solve for x, y, z if: x^3 + y^3 + z^3 = 42

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x},\:\mathrm{y},\:\mathrm{z}\:\:\mathrm{if}:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:\:=\:\:\mathrm{42} \\ $$

Question Number 78162    Answers: 0   Comments: 4

Find the sum of nth term Σ_(k = 1) ^n (1/k^2 )

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{term} \\ $$$$\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} } \\ $$

Question Number 78147    Answers: 0   Comments: 0

Question Number 78108    Answers: 1   Comments: 1

Question Number 78102    Answers: 1   Comments: 1

Question Number 78049    Answers: 2   Comments: 1

Question Number 78040    Answers: 1   Comments: 4

Question Number 78037    Answers: 0   Comments: 11

Question Number 77991    Answers: 2   Comments: 0

If P_1 P_2 P_3 will be taken as point in an Argand diagram representing complex number Z_1 ,Z_2 ,Z_3 and point P_(1 ) ,P_2 ,P_3 is an equalateral triangle.show that (Z_2 −Z_3 )^2 +(Z_3 −Z_1 )^2 +(Z_1 −Z_2 )^2 =0

$${If}\:\:{P}_{\mathrm{1}} \:\:{P}_{\mathrm{2}} \:\:{P}_{\mathrm{3}} \:\:{will}\:{be}\:{taken} \\ $$$${as}\:{point}\:{in}\:{an}\:{Argand} \\ $$$${diagram}\:{representing} \\ $$$${complex}\:{number} \\ $$$${Z}_{\mathrm{1}} ,{Z}_{\mathrm{2}} ,{Z}_{\mathrm{3}} \:\:{and}\:{point} \\ $$$${P}_{\mathrm{1}\:} ,{P}_{\mathrm{2}} ,{P}_{\mathrm{3}} \:{is}\:{an}\:{equalateral} \\ $$$${triangle}.{show}\:{that} \\ $$$$\left({Z}_{\mathrm{2}} −{Z}_{\mathrm{3}} \right)^{\mathrm{2}} +\left({Z}_{\mathrm{3}} −{Z}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$

Question Number 77990    Answers: 2   Comments: 0

Find the equation to the two circles each of which touch the three circle x^2 +y^2 =4a^2 x^2 +y^2 +2ax=0 x^2 +y^2 −2ax=0

$${Find}\:{the}\:{equation}\:{to}\:{the} \\ $$$${two}\:{circles}\:{each}\:{of} \\ $$$${which}\:{touch}\:{the}\:{three}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0} \\ $$$$ \\ $$

Question Number 77965    Answers: 1   Comments: 9

solve for x,y,z ∈N 35x+21y+60z=665

$${solve}\:{for}\:{x},{y},{z}\:\in\mathbb{N} \\ $$$$\mathrm{35}{x}+\mathrm{21}{y}+\mathrm{60}{z}=\mathrm{665} \\ $$

Question Number 77902    Answers: 0   Comments: 8

Question Number 77885    Answers: 2   Comments: 0

solve for : x 1.(√((x−a)(x−b)))+(√((x−b)(x−c)))+(√((x−c)(x−a)))=d [a,b,c,d∈R try for: a=4,b=3,c=2,d=1] 2. (x−a^2 )(√(x−a))+(x−a)(√(x−a^2 ))=a^2 +a+1 3. (x−a^2 )(√(x^2 −a))+(x^2 −a)(√(x−a^2 ))=a^2 +a+1 [a∈R try for: a=(1/2) ]

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{1}.\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)}+\sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)}=\boldsymbol{\mathrm{d}} \\ $$$$\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}},\boldsymbol{\mathrm{d}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\:\mathrm{a}=\mathrm{4},\mathrm{b}=\mathrm{3},\mathrm{c}=\mathrm{2},\mathrm{d}=\mathrm{1}\right] \\ $$$$\mathrm{2}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\mathrm{3}.\:\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}\right)\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right. \\ $$$$\left.\mathrm{try}\:\mathrm{for}:\:\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\right] \\ $$$$ \\ $$

Question Number 77883    Answers: 1   Comments: 7

Question Number 77881    Answers: 0   Comments: 5

Question Number 77864    Answers: 1   Comments: 1

Question Number 77855    Answers: 0   Comments: 0

Question Number 77819    Answers: 2   Comments: 0

  Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271      Pg 272      Pg 273   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com