Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 269

Question Number 92366    Answers: 0   Comments: 3

Question Number 92346    Answers: 3   Comments: 3

solve ((1+(√x)))^(1/3) +((1−(√x)))^(1/3) =(5)^(1/3)

$${solve} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\sqrt[{\mathrm{3}}]{\mathrm{5}} \\ $$

Question Number 92335    Answers: 0   Comments: 0

(√({x})) = 1+ ln(x)

$$\sqrt{\left\{\mathrm{x}\right\}}\:=\:\mathrm{1}+\:\mathrm{ln}\left(\mathrm{x}\right)\: \\ $$

Question Number 92324    Answers: 1   Comments: 0

Find the value of x for which Σ_(n = 0) ^(n = ∞) 16((3/4)x + 1)^n (a) Is convergent (b) Is equal to 10(2/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{for}\:\mathrm{which}\:\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}\:\:=\:\:\infty} {\sum}}\:\mathrm{16}\left(\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}\:\:+\:\:\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{Is}\:\mathrm{convergent} \\ $$$$\left(\mathrm{b}\right)\:\:\:\mathrm{Is}\:\mathrm{equal}\:\mathrm{to}\:\:\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 92283    Answers: 0   Comments: 3

9^x +3^x = 25^x −5^x find (5^x /(3^x +1)) ?

$$\mathrm{9}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{25}^{\mathrm{x}} −\mathrm{5}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\frac{\mathrm{5}^{\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} +\mathrm{1}}\:? \\ $$

Question Number 92279    Answers: 0   Comments: 2

7sin(θ)+2cos^2 (θ)=5 0≤θ≤2π

$$\mathrm{7}{sin}\left(\theta\right)+\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)=\mathrm{5} \\ $$$$ \\ $$$$\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$

Question Number 92255    Answers: 2   Comments: 0

7x = 3 (mod 18 )

$$\mathrm{7x}\:=\:\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{18}\:\right)\: \\ $$

Question Number 92252    Answers: 1   Comments: 0

{ ((x(√y) +y(√x) = 6)),((x+y = 5 )) :} find x^3 + (1/y) =

$$\begin{cases}{\mathrm{x}\sqrt{\mathrm{y}}\:+\mathrm{y}\sqrt{\mathrm{x}}\:=\:\mathrm{6}}\\{\mathrm{x}+\mathrm{y}\:=\:\mathrm{5}\:}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}^{\mathrm{3}} +\:\frac{\mathrm{1}}{\mathrm{y}}\:=\: \\ $$

Question Number 92242    Answers: 0   Comments: 2

((8^x +27^x )/(12^x +18^x )) = (7/6) x = ?

$$\frac{\mathrm{8}^{{x}} +\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} +\mathrm{18}^{{x}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}}\: \\ $$$${x}\:=\:? \\ $$

Question Number 92225    Answers: 1   Comments: 0

if tanh(x)=((72)/(161))(√5) prove that sinh(x)∈Q Q={rational numbdrs}

$${if}\:\:\:{tanh}\left({x}\right)=\frac{\mathrm{72}}{\mathrm{161}}\sqrt{\mathrm{5}} \\ $$$${prove}\:{that}\:{sinh}\left({x}\right)\in{Q}\: \\ $$$$ \\ $$$$ \\ $$$${Q}=\left\{{rational}\:{numbdrs}\right\} \\ $$$$ \\ $$

Question Number 92219    Answers: 0   Comments: 5

Question Number 92211    Answers: 1   Comments: 1

4x = 2 (mod 3 )

$$\mathrm{4x}\:=\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\:\right)\: \\ $$

Question Number 92196    Answers: 0   Comments: 4

2^x + 3^y = 72 2^y + 3^(x ) = 108 Please am not getting correct answer for this question using a method proposed .

$$\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:=\:\:\mathrm{72} \\ $$$$\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}\:\:} =\:\:\mathrm{108} \\ $$$$\mathrm{Please}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}\:\mathrm{correct}\:\mathrm{answer}\:\mathrm{for} \\ $$$$\mathrm{this}\:\mathrm{question}\:\mathrm{using}\:\mathrm{a}\:\mathrm{method}\:\mathrm{proposed}\:. \\ $$

Question Number 92191    Answers: 0   Comments: 1

⌈ ((30))^(1/(3 )) ⌉ ⌊ ((30))^(1/(3 )) ⌋ ⌈ ((1256 ))^(1/(6 )) ⌉

$$\lceil\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rceil\: \\ $$$$\lfloor\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rfloor\: \\ $$$$\lceil\:\sqrt[{\mathrm{6}\:\:}]{\mathrm{1256}\:}\:\rceil\: \\ $$

Question Number 92187    Answers: 1   Comments: 1

4x = 6 (mod 10 )

$$\mathrm{4x}\:=\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{10}\:\right) \\ $$

Question Number 92193    Answers: 0   Comments: 2

−2345 (mod 6) −5400 ( mod 11)

$$−\mathrm{2345}\:\left(\mathrm{mod}\:\mathrm{6}\right)\: \\ $$$$−\mathrm{5400}\:\left(\:\mathrm{mod}\:\mathrm{11}\right)\: \\ $$

Question Number 92151    Answers: 0   Comments: 1

If p and q are positive integers such that the value pq + 2p+2q = 217 find p+q

$$\mathrm{If}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\mathrm{pq}\:+\:\mathrm{2p}+\mathrm{2q}\:=\:\mathrm{217}\: \\ $$$$\mathrm{find}\:\mathrm{p}+\mathrm{q}\: \\ $$

Question Number 92146    Answers: 1   Comments: 1

how do i find integers that satisfy x^2 −y^2 =2017

$${how}\:{do}\:{i}\:{find}\:{integers}\:{that}\:{satisfy} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2017} \\ $$

Question Number 92137    Answers: 0   Comments: 2

∫((2x)/(1+x))

$$\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}} \\ $$

Question Number 92102    Answers: 2   Comments: 3

how can we factorize x^5 −1 ?

$${how}\:{can}\:{we}\:{factorize}\:\:\:{x}^{\mathrm{5}} −\mathrm{1}\:\:? \\ $$

Question Number 92084    Answers: 1   Comments: 0

Question Number 92013    Answers: 1   Comments: 10

Solve: 2^x + 3^y = 72 ..... (i) 2^y + 3^x = 108 ..... (ii)

$$\mathrm{Solve}: \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:\:=\:\:\mathrm{72}\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}} \:\:\:=\:\:\mathrm{108}\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Question Number 92008    Answers: 0   Comments: 1

Sum of infinite series: 1 + (3/4) + ((3.5)/(4.8)) + ((3.5.7)/(4.8.12)) + ... is ?

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series}:\:\:\mathrm{1}\:\:+\:\:\frac{\mathrm{3}}{\mathrm{4}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\:\:+\:\:...\:\:\:\:\mathrm{is}\:? \\ $$

Question Number 92000    Answers: 1   Comments: 0

proof 0!!=1

$$\mathrm{proof}\:\mathrm{0}!!=\mathrm{1} \\ $$

Question Number 91936    Answers: 0   Comments: 6

how to evaluate ln(i), i=(√(−1)).

$${how}\:{to}\:{evaluate}\:{ln}\left({i}\right),\:{i}=\sqrt{−\mathrm{1}}. \\ $$

Question Number 91872    Answers: 0   Comments: 3

solve in R 8(√(x^4 +1))+5(√(x^3 +1))=7x^2 +12

$${solve}\:{in}\:\mathbb{R} \\ $$$$\mathrm{8}\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}+\mathrm{5}\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}=\mathrm{7x}^{\mathrm{2}} +\mathrm{12} \\ $$

  Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271      Pg 272      Pg 273   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com