Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 268

Question Number 91744    Answers: 1   Comments: 1

Question Number 91688    Answers: 0   Comments: 2

solve equations x^(x ) + y^y = 31 and x + y = 5

$${solve}\:{equations}\:{x}^{{x}\:} +\:{y}^{{y}} \:=\:\mathrm{31}\:{and}\:{x}\:+\:{y}\:=\:\mathrm{5} \\ $$

Question Number 91660    Answers: 0   Comments: 4

Question Number 91647    Answers: 1   Comments: 0

solve x⌊x⌊x⌊x⌋⌋⌋=2020

$${solve} \\ $$$${x}\lfloor{x}\lfloor{x}\lfloor{x}\rfloor\rfloor\rfloor=\mathrm{2020} \\ $$

Question Number 91599    Answers: 0   Comments: 1

Question Number 91560    Answers: 0   Comments: 2

x=((1+(√(2004)))/2) 4x^3 −2007x−2000=?

$${x}=\frac{\mathrm{1}+\sqrt{\mathrm{2004}}}{\mathrm{2}} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −\mathrm{2007}{x}−\mathrm{2000}=? \\ $$

Question Number 91491    Answers: 1   Comments: 0

x^3 +1 = 2 ((2x−1))^(1/(3 )) x =?

$${x}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}{x}−\mathrm{1}} \\ $$$${x}\:=? \\ $$

Question Number 91474    Answers: 0   Comments: 0

f(x)=(√(4−x^2 )) and g(x)=3x+1 find the sum , different, and product f(x) and g(x).

$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:,\:\mathrm{different},\:\mathrm{and}\:\mathrm{product} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right). \\ $$

Question Number 91473    Answers: 1   Comments: 0

Question Number 91471    Answers: 1   Comments: 0

∣2x−7∣>3

$$\mid\mathrm{2x}−\mathrm{7}\mid>\mathrm{3} \\ $$

Question Number 91470    Answers: 0   Comments: 2

∣x−3∣<0.1

$$\mid\mathrm{x}−\mathrm{3}\mid<\mathrm{0}.\mathrm{1} \\ $$

Question Number 91469    Answers: 0   Comments: 3

−5<((4−3x)/2)<l

$$−\mathrm{5}<\frac{\mathrm{4}−\mathrm{3x}}{\mathrm{2}}<\mathrm{l} \\ $$

Question Number 91468    Answers: 0   Comments: 0

Question Number 91464    Answers: 0   Comments: 12

Find the greatest coefficient in the expansion of (3 − 2x)^(−7)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3}\:\:−\:\:\mathrm{2x}\right)^{−\mathrm{7}} \\ $$

Question Number 91452    Answers: 2   Comments: 1

((−1))^(1/4) =?

$$\:\:\:\sqrt[{\mathrm{4}}]{−\mathrm{1}}\:=? \\ $$

Question Number 91671    Answers: 0   Comments: 2

show that (x)^(1/(ln(x))) =e

$${show}\:{that} \\ $$$$\sqrt[{{ln}\left({x}\right)}]{{x}}={e} \\ $$

Question Number 91399    Answers: 2   Comments: 13

Question Number 91390    Answers: 1   Comments: 3

ABCDEF is a 6 digit number, ABC and DEF are 3 digit numbers. find ABCDEF satisfying: 1) ABCDEF=1×ABC×DEF 2) ABCDEF=2×ABC×DEF 3) ABCDEF=3×ABC×DEF 4) ABCDEF=4×ABC×DEF 5) ABCDEF=5×ABC×DEF 6) ABCDEF=6×ABC×DEF 7) ABCDEF=7×ABC×DEF 8) ABCDEF=8×ABC×DEF 9) ABCDEF=9×ABC×DEF

$${ABCDEF}\:{is}\:{a}\:\mathrm{6}\:{digit}\:{number}, \\ $$$${ABC}\:{and}\:{DEF}\:{are}\:\mathrm{3}\:{digit}\:{numbers}. \\ $$$${find}\:{ABCDEF}\:\:{satisfying}: \\ $$$$\left.\mathrm{1}\right)\:\:\:{ABCDEF}=\mathrm{1}×{ABC}×{DEF} \\ $$$$\left.\mathrm{2}\right)\:\:\:{ABCDEF}=\mathrm{2}×{ABC}×{DEF} \\ $$$$\left.\mathrm{3}\right)\:\:\:{ABCDEF}=\mathrm{3}×{ABC}×{DEF} \\ $$$$\left.\mathrm{4}\right)\:\:\:{ABCDEF}=\mathrm{4}×{ABC}×{DEF} \\ $$$$\left.\mathrm{5}\right)\:\:\:{ABCDEF}=\mathrm{5}×{ABC}×{DEF} \\ $$$$\left.\mathrm{6}\right)\:\:\:{ABCDEF}=\mathrm{6}×{ABC}×{DEF} \\ $$$$\left.\mathrm{7}\right)\:\:\:{ABCDEF}=\mathrm{7}×{ABC}×{DEF} \\ $$$$\left.\mathrm{8}\right)\:\:\:{ABCDEF}=\mathrm{8}×{ABC}×{DEF} \\ $$$$\left.\mathrm{9}\right)\:\:\:{ABCDEF}=\mathrm{9}×{ABC}×{DEF} \\ $$

Question Number 91378    Answers: 1   Comments: 6

Question Number 91377    Answers: 0   Comments: 1

Question Number 91362    Answers: 1   Comments: 3

Question Number 91277    Answers: 2   Comments: 0

p=1−(1/2)+(1/3)−(1/4)+...+(1/(2003))−(1/(2004)) q=(1/(1003))+(1/(1004))+...+(1/(2004)) p^2 +q^2 =

$${p}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{2003}}−\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{1003}}+\frac{\mathrm{1}}{\mathrm{1004}}+...+\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:=\: \\ $$

Question Number 91258    Answers: 0   Comments: 0

prove that _2 F_1 (α,β,β−a+1,−1)=((Γ(β−a+1)Γ((β/2)+1))/(Γ(β+1)Γ((β/2)−α+1)))

$${prove}\:{that} \\ $$$$\:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\beta,\beta−{a}+\mathrm{1},−\mathrm{1}\right)=\frac{\Gamma\left(\beta−{a}+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\beta+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}−\alpha+\mathrm{1}\right)} \\ $$

Question Number 91195    Answers: 1   Comments: 0

what is the duble fictorial furmolla?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{duble}\:\mathrm{fictorial}\:\mathrm{furmolla}? \\ $$

Question Number 91178    Answers: 0   Comments: 2

Question Number 91166    Answers: 0   Comments: 7

  Pg 263      Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271      Pg 272   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com