Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 266
Question Number 91377 Answers: 0 Comments: 1
Question Number 91362 Answers: 1 Comments: 3
Question Number 91277 Answers: 2 Comments: 0
$${p}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{2003}}−\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{1003}}+\frac{\mathrm{1}}{\mathrm{1004}}+...+\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:=\: \\ $$
Question Number 91258 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$$\:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\beta,\beta−{a}+\mathrm{1},−\mathrm{1}\right)=\frac{\Gamma\left(\beta−{a}+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\beta+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}−\alpha+\mathrm{1}\right)} \\ $$
Question Number 91195 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{duble}\:\mathrm{fictorial}\:\mathrm{furmolla}? \\ $$
Question Number 91178 Answers: 0 Comments: 2
Question Number 91166 Answers: 0 Comments: 7
Question Number 91047 Answers: 1 Comments: 6
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}:\:\:\:\:\sqrt{\mathrm{7}}\:\:+\:\:\sqrt{\mathrm{5}} \\ $$
Question Number 91038 Answers: 1 Comments: 1
$${if}\:{sin}\left(\frac{\alpha}{\mathrm{2}}\right)=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$${and}\:{cos}\left(\frac{\beta}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${prove} \\ $$$${sin}\left(\alpha\right)={cos}\left(\beta\right) \\ $$
Question Number 90946 Answers: 0 Comments: 0
$${determine}\:{x},{y},{z}\:\in\:\mathbb{R}\:{such}\:{that}\: \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{2}{y}−\mathrm{2}{xy}+\mathrm{2}{xz}−\mathrm{16}{z}+\mathrm{35}=\mathrm{0} \\ $$
Question Number 90916 Answers: 0 Comments: 0
Question Number 90842 Answers: 3 Comments: 4
$${x}^{\mathrm{2}} −\left({y}−{z}\right)^{\mathrm{2}} \:=\:\mathrm{3} \\ $$$${y}^{\mathrm{2}} \:−\:\left({z}−{x}\right)^{\mathrm{2}} \:=\:\mathrm{5} \\ $$$${z}^{\mathrm{2}} \:−\:\left({x}−{y}\right)^{\mathrm{2}} \:=\:\mathrm{12} \\ $$
Question Number 90793 Answers: 1 Comments: 4
$${a}+{b}+{c}+{d}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{10} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} =\mathrm{22} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +{d}^{\mathrm{4}} =\:? \\ $$
Question Number 90772 Answers: 0 Comments: 2
$${show}\:{that}\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}=\left({b}−{c}\right)^{\mathrm{2}} −\mathrm{1}\:{are}\:{rational}\:{if} \\ $$$${b}\:{and}\:{c}\:{are}\:{rational}\:{numbers}. \\ $$
Question Number 90747 Answers: 1 Comments: 0
$$\mathrm{solve}:\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{3}} \:\:\:+\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{2}} \:\:\:=\:\:\:\mathrm{12} \\ $$
Question Number 90716 Answers: 0 Comments: 1
$${If}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{4}\:,\:{what}\:{the}\: \\ $$$${value}\:{of}\:\frac{{x}^{\mathrm{6}} −\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$
Question Number 90661 Answers: 2 Comments: 0
$${show}\:{that}\:\left({n}^{\mathrm{4}} −{n}^{\mathrm{2}} \right)\:{is}\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 90557 Answers: 0 Comments: 7
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclose}\:\mathrm{by}\:\mathrm{the}\:\mathrm{line}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{x}\:\:−\:\:\mathrm{1}\:\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\:\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{2x}\:\:+\:\:\mathrm{6} \\ $$
Question Number 90550 Answers: 0 Comments: 3
$${x}^{\mathrm{4}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{527}\: \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\:?\: \\ $$
Question Number 90483 Answers: 0 Comments: 0
$${prove}\:{that}/\:\frac{{sin}^{\mathrm{3}} {a}}{{sin}\:{b}}+\frac{{cos}^{\mathrm{3}} {a}}{{cos}\:{b}}\geqslant{sec}\left({a}−{b}\right) \\ $$$${for}\:{all}\:{a},{b}\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$
Question Number 90473 Answers: 1 Comments: 2
Question Number 90406 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\:\:\:\mathrm{x}\:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}}\:\:\:=\:\:\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\:\:\:=\:\:\:??? \\ $$
Question Number 90379 Answers: 0 Comments: 2
Question Number 90360 Answers: 1 Comments: 1
Question Number 90350 Answers: 1 Comments: 0
$${n}^{\mathrm{2}} {x}−\mathrm{5}{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{n}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{5}{a}^{\mathrm{2}} {x} \\ $$
Question Number 90318 Answers: 0 Comments: 0
$$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$
Pg 261 Pg 262 Pg 263 Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270
Terms of Service
Privacy Policy
Contact: info@tinkutara.com