Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 263
Question Number 97694 Answers: 1 Comments: 7
Question Number 97675 Answers: 1 Comments: 0
Question Number 97637 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{p},\mathrm{q}\in\mathbb{R}_{+} ^{\ast} −\left\{−\mathrm{1}\right\}/\frac{\mathrm{1}}{\mathrm{p}}+\frac{\mathrm{1}}{\mathrm{q}}=\mathrm{1}\:\mathrm{show}\:\mathrm{that}; \\ $$$$\forall\mathrm{a},\mathrm{b}\:\in\mathbb{R}\:\mathrm{ab}\leqslant\frac{\mathrm{a}^{\mathrm{p}} }{\mathrm{p}}+\frac{\mathrm{b}^{\mathrm{q}} }{\mathrm{q}} \\ $$
Question Number 97564 Answers: 1 Comments: 0
Question Number 97512 Answers: 0 Comments: 2
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{quadratic}\:\mathrm{equation}\:\left(\mathrm{1}−\mathrm{2k}\right)\mathrm{x}^{\mathrm{2}} −\mathrm{6kx}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{kx}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}=\mathrm{0}\:\mathrm{have}\:\mathrm{atleast} \\ $$$$\mathrm{one}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{common}\:\mathrm{are}\:\_\_\_ \\ $$
Question Number 97501 Answers: 0 Comments: 2
$$\mathrm{The}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{n}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\mathrm{the}\:\mathrm{expression}\:\mathrm{y}\:=\:\mathrm{5log}^{\mathrm{2}} \:_{\mathrm{3}} \left(\mathrm{n}\right)\:− \\ $$$$\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{n}^{\mathrm{12}} \right)+\mathrm{9}\:,\:\mathrm{has}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{is}\:\_\_\_ \\ $$
Question Number 97496 Answers: 1 Comments: 0
$${if}\:\:\:\:\:\:{f}\left(\frac{\mathrm{2}{x}+\mathrm{5}}{{x}−\mathrm{3}}\right)=\mathrm{3}{x}+\mathrm{5}\:\:\:{find}\:\:\:{f}\left({x}\right) \\ $$$$ \\ $$$${please}\:{solve}\:{it} \\ $$
Question Number 97485 Answers: 1 Comments: 3
Question Number 97428 Answers: 2 Comments: 5
Question Number 97386 Answers: 0 Comments: 2
Question Number 97306 Answers: 0 Comments: 2
$$\mathrm{if}\:\:\:\:\:\:\:\:\:\mathrm{sin14}=\mathrm{x} \\ $$$$\mathrm{then} \\ $$$$\mathrm{cos}^{\mathrm{2}} \mathrm{22}−\mathrm{cos}^{\mathrm{2}} \mathrm{8}=? \\ $$
Question Number 97303 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{G}}\mathrm{iven}\:\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} \:=\:\mathrm{0}\:,\:\mathrm{y}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{x}_{\mathrm{1}} \mathrm{y}_{\mathrm{1}} +\:\mathrm{x}_{\mathrm{2}} \mathrm{y}_{\mathrm{2}} \:+\:\mathrm{x}_{\mathrm{3}} \mathrm{y}_{\mathrm{3}} \:=\:\mathrm{0}\:.\:\mathrm{The}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} }\:+\:\frac{\mathrm{y}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{y}_{\mathrm{1}} ^{\mathrm{2}} \:+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{y}_{\mathrm{3}} ^{\mathrm{2}} }\:=\:?\: \\ $$
Question Number 97272 Answers: 0 Comments: 0
Question Number 97227 Answers: 2 Comments: 1
Question Number 97206 Answers: 2 Comments: 0
Question Number 97136 Answers: 0 Comments: 3
$$\mathrm{Evaluate} \\ $$$$\:\:\frac{\mathrm{3}}{\mathrm{1}!\:+\:\mathrm{2}!\:+\:\mathrm{3}!}\:\:+\:\:\frac{\mathrm{4}}{\mathrm{2}!\:+\:\mathrm{3}!\:+\:\mathrm{4}!}\:\:+\:\:...\:+\:\:\frac{\mathrm{2001}}{\mathrm{1999}!\:\:+\:\:\mathrm{2000}!\:\:+\:\:\mathrm{2001}!} \\ $$
Question Number 97135 Answers: 0 Comments: 1
$${prove}\:{that}: \\ $$$${sin}\left(\mathrm{16}{x}\right)\:{cot}\left({x}\right)=\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{4}{x}\right)+\mathrm{2}{cos}\left(\mathrm{6}{x}\right)+...+\mathrm{2}{cos}\left(\mathrm{16}{x}\right) \\ $$
Question Number 97134 Answers: 0 Comments: 0
$${find}\:{the}\:{laplace}\:{transform}\:{of}\:{t}^{\frac{\mathrm{3}}{\mathrm{2}}} {erf}\left({t}\right) \\ $$
Question Number 97114 Answers: 0 Comments: 0
$${pls}\:{find}\:{x} \\ $$$$ \\ $$$${x}^{{x}^{{x}} } +{ln}\left(\mathrm{2}{x}\right)−\mathrm{1}=\mathrm{0} \\ $$
Question Number 97067 Answers: 2 Comments: 1
$$\mathrm{if}\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{degree}\:\mathrm{of} \\ $$$$\mathrm{x}^{\mathrm{6p}+\mathrm{1}} +\mathrm{3x}^{\mathrm{4p}−\mathrm{3}} +\mathrm{4x}^{\mathrm{8p}−\mathrm{10}} +\mathrm{8}\:\:\mathrm{polynomial}? \\ $$
Question Number 97064 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{an}\right)\:\mathrm{in}\:\mathrm{this}\:\mathrm{utility}\:\:\left(\mathrm{3xy}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$
Question Number 97051 Answers: 2 Comments: 2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\: \\ $$$$\mathrm{dodecagon}\:\left(\mathrm{12}\:\mathrm{sides}\right)\:\mathrm{whose}\: \\ $$$$\mathrm{area}\:\mathrm{is}\:\mathrm{24}+\mathrm{12}\sqrt{\mathrm{3}}\:?\: \\ $$
Question Number 97019 Answers: 0 Comments: 1
Question Number 96951 Answers: 1 Comments: 5
$${prove}\:{that}\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+...+\frac{−\mathrm{1}^{{n}−\mathrm{1}} }{{n}}\:\:{is}\:{always}\:{positive} \\ $$$$ \\ $$
Question Number 96868 Answers: 0 Comments: 1
Question Number 96839 Answers: 0 Comments: 0
Pg 258 Pg 259 Pg 260 Pg 261 Pg 262 Pg 263 Pg 264 Pg 265 Pg 266 Pg 267
Terms of Service
Privacy Policy
Contact: info@tinkutara.com