Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 263

Question Number 89153    Answers: 1   Comments: 0

If P=((RE^2 )/((R+B)^2 )) make R the subject of the formula.

$$\mathrm{If}\:\mathrm{P}=\frac{\mathrm{RE}^{\mathrm{2}} }{\left(\mathrm{R}+\mathrm{B}\right)^{\mathrm{2}} }\:\mathrm{make}\:\mathrm{R}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula}. \\ $$

Question Number 89130    Answers: 0   Comments: 0

$$ \\ $$

Question Number 89125    Answers: 1   Comments: 0

Question Number 89107    Answers: 0   Comments: 0

Question Number 89098    Answers: 0   Comments: 0

x=^( c−1) (√((ay−bz)/(cdy))) If a increases, what happens to x? Explain your answer.

$${x}=^{\:\:{c}−\mathrm{1}} \sqrt{\frac{{ay}−{bz}}{{cdy}}} \\ $$$$ \\ $$$$\mathrm{If}\:{a}\:\mathrm{increases},\:\mathrm{what}\:\mathrm{happens}\:\mathrm{to}\:{x}? \\ $$$$\mathrm{Explain}\:\mathrm{your}\:\mathrm{answer}. \\ $$

Question Number 89064    Answers: 1   Comments: 0

(√(1+(√(1+2(√(1+3(√(...)))))))) + (1/((√(1+2(√(1+3(√(1+4(√(...))))))))+(1/(√(1+3(√(1+4(√(1+5(√(...))))))))))) = ...

$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{3}\sqrt{...}}}}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{3}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{...}}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{3}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{...}}}}}}\:=\:... \\ $$

Question Number 89086    Answers: 0   Comments: 1

show that (((2/3)−((5(√(33)))/(18))))^(1/3) +(((2/3)+((5(√(33)))/(18))))^(1/3) =1

$${show}\:{that} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{5}\sqrt{\mathrm{33}}}{\mathrm{18}}}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{5}\sqrt{\mathrm{33}}}{\mathrm{18}}}=\mathrm{1} \\ $$

Question Number 89070    Answers: 0   Comments: 0

(((√(a^2 +(b^2 /x^2 )))+(√(a^2 +b^2 x^2 )))/((√(a^2 +(b^2 /x^2 )))−(√(a^2 +b^2 x^2 )))) = ((a^2 /b^2 ))x x∈R^+ ; Express x in terms of a^2 , b^2 .

$$\frac{\sqrt{{a}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{{x}^{\mathrm{2}} }}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}^{\mathrm{2}} }}{\sqrt{{a}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{{x}^{\mathrm{2}} }}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}^{\mathrm{2}} }}\:=\:\left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right){x} \\ $$$${x}\in\mathbb{R}^{+} \:\:;\:\:{Express}\:{x}\:{in}\:{terms}\:{of} \\ $$$${a}^{\mathrm{2}} ,\:{b}^{\mathrm{2}} \:. \\ $$

Question Number 89032    Answers: 0   Comments: 0

find by using de moivre′s formula cos(2°)=?

$${find}\:{by}\:{using}\:{de}\:{moivre}'{s}\:{formula} \\ $$$${cos}\left(\mathrm{2}°\right)=? \\ $$

Question Number 88937    Answers: 0   Comments: 0

Question Number 88921    Answers: 2   Comments: 0

find x,y x−2y−(√(xy))=0 (√(x−1))−(√(2y−1))=1

$${find}\:{x},{y} \\ $$$${x}−\mathrm{2}{y}−\sqrt{{xy}}=\mathrm{0} \\ $$$$\sqrt{{x}−\mathrm{1}}−\sqrt{\mathrm{2}{y}−\mathrm{1}}=\mathrm{1} \\ $$

Question Number 88881    Answers: 1   Comments: 0

Question Number 88873    Answers: 0   Comments: 1

3+(√(x^2 −5)) > ∣x−1∣

$$\mathrm{3}+\sqrt{{x}^{\mathrm{2}} −\mathrm{5}}\:>\:\mid{x}−\mathrm{1}\mid\: \\ $$

Question Number 88858    Answers: 0   Comments: 0

Question Number 88811    Answers: 1   Comments: 0

{ (((x+1)^2 (y+1)^2 =27xy)),(((x^2 +1)(y^2 +1) =10xy)) :}

$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{27}{xy}}\\{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({y}^{\mathrm{2}} +\mathrm{1}\right)\:=\mathrm{10}{xy}}\end{cases} \\ $$

Question Number 88771    Answers: 0   Comments: 4

solve x^x^4 =64

$${solve} \\ $$$${x}^{{x}^{\mathrm{4}} } =\mathrm{64} \\ $$

Question Number 88752    Answers: 1   Comments: 2

cos(𝛂)+cos(𝛃)+cos(𝛄)≤(3/2) prove the inequality

$$\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\alpha}\right)+\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\beta}\right)+\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\gamma}\right)\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{prove}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{inequality}} \\ $$

Question Number 88678    Answers: 0   Comments: 8

Find (√i)+(√(−i))

$$\boldsymbol{\mathrm{F}}{ind}\:\:\:\sqrt{\boldsymbol{{i}}}+\sqrt{−\boldsymbol{\mathrm{i}}} \\ $$

Question Number 88642    Answers: 1   Comments: 2

Question Number 88611    Answers: 0   Comments: 0

prove that ((1+p^2 +p^4 +......+p^(2n) )/(p+p^3 +p^5 +.....p^(2n−1) ))>((n+1)/(np))

$${prove}\:{that} \\ $$$$\frac{\mathrm{1}+{p}^{\mathrm{2}} +{p}^{\mathrm{4}} +......+{p}^{\mathrm{2}{n}} }{{p}+{p}^{\mathrm{3}} +{p}^{\mathrm{5}} +.....{p}^{\mathrm{2}{n}−\mathrm{1}} }>\frac{{n}+\mathrm{1}}{{np}} \\ $$

Question Number 88610    Answers: 0   Comments: 2

is 1×1×1×..........=1^∞ or 1×1×1×1×1×..........=1

$${is}\:\mathrm{1}×\mathrm{1}×\mathrm{1}×..........=\mathrm{1}^{\infty} \: \\ $$$${or} \\ $$$$\:\mathrm{1}×\mathrm{1}×\mathrm{1}×\mathrm{1}×\mathrm{1}×..........=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Question Number 88594    Answers: 0   Comments: 3

solve for x∈C cos (x)=a+bi

$${solve}\:{for}\:{x}\in\mathbb{C} \\ $$$$\mathrm{cos}\:\left({x}\right)={a}+{bi} \\ $$

Question Number 88590    Answers: 0   Comments: 0

a^a^a^a^3 =5 find−a

$${a}^{{a}^{{a}^{{a}^{\mathrm{3}} } } } =\mathrm{5} \\ $$$${find}−{a} \\ $$

Question Number 88491    Answers: 1   Comments: 0

solve cos(x)=k

$$\boldsymbol{{solve}} \\ $$$${cos}\left({x}\right)={k} \\ $$

Question Number 88458    Answers: 0   Comments: 0

Using the principle of mathematical induction to prove that a_1 , a_2 , ... , a_n , ((a_1 + a_2 + ... + a_n )/n) ≥ ((a_1 , a_2 , ... , a_n ))^(1/n)

$$\mathrm{Using}\:\mathrm{the}\:\mathrm{principle}\:\mathrm{of}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{to}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\:\:\mathrm{a}_{\mathrm{1}} \:,\:\:\:\mathrm{a}_{\mathrm{2}} \:,\:\:...\:,\:\mathrm{a}_{\mathrm{n}} \:,\:\:\frac{\mathrm{a}_{\mathrm{1}} \:+\:\mathrm{a}_{\mathrm{2}} \:+\:...\:+\:\mathrm{a}_{\mathrm{n}} }{\mathrm{n}}\:\:\:\:\geqslant\:\:\:\sqrt[{\mathrm{n}}]{\mathrm{a}_{\mathrm{1}} \:,\:\:\mathrm{a}_{\mathrm{2}} \:,\:\:...\:,\:\mathrm{a}_{\mathrm{n}} } \\ $$

Question Number 88435    Answers: 0   Comments: 0

  Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com