Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 263

Question Number 93296    Answers: 1   Comments: 1

Question Number 93177    Answers: 0   Comments: 3

x^2 +(1/x^2 )=47 (√x)+(1/(√x))=...

$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{47} \\ $$$$\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}=... \\ $$

Question Number 93173    Answers: 1   Comments: 0

If a_(n + 3) = (a_(n − 1) /a_(n + 1) ) , and a_0 = 1, a_2 = 2 find a_n

$$\mathrm{If}\:\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{3}} \:\:=\:\:\frac{\mathrm{a}_{\mathrm{n}\:\:−\:\:\mathrm{1}} }{\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} }\:,\:\:\:\:\mathrm{and}\:\:\:\mathrm{a}_{\mathrm{0}} \:\:=\:\:\mathrm{1},\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\mathrm{find}\:\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 93170    Answers: 0   Comments: 2

x^2 +(1/x^2 )=27 (√x)+(1/(√x))=....

$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{27} \\ $$$$\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}=.... \\ $$

Question Number 93138    Answers: 2   Comments: 0

{ ((18x^2 =3y(1+9x^2 ))),((18y^2 =3z(1+9y^2 ))),((18z^2 =3x(1+9z^2 ))) :}

$$\begin{cases}{\mathrm{18x}^{\mathrm{2}} =\mathrm{3y}\left(\mathrm{1}+\mathrm{9x}^{\mathrm{2}} \right)}\\{\mathrm{18y}^{\mathrm{2}} =\mathrm{3z}\left(\mathrm{1}+\mathrm{9y}^{\mathrm{2}} \right)}\\{\mathrm{18z}^{\mathrm{2}} =\mathrm{3x}\left(\mathrm{1}+\mathrm{9z}^{\mathrm{2}} \right)}\end{cases} \\ $$

Question Number 93129    Answers: 1   Comments: 2

derive x^2 −(α+β)x+αβ

$${derive}\:{x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}+\alpha\beta \\ $$

Question Number 93057    Answers: 1   Comments: 1

y=b1x1+b2x2+c i need to arrange the equation for thd value of x2

$${y}={b}\mathrm{1}{x}\mathrm{1}+{b}\mathrm{2}{x}\mathrm{2}+{c} \\ $$$${i}\:{need}\:{to}\:{arrange}\:{the}\:{equation}\:{for}\:{thd}\:{value}\:{of}\:{x}\mathrm{2} \\ $$

Question Number 93039    Answers: 0   Comments: 1

{ ((xy+yz = 8)),((yz+xz = 9)),((zx+xy = 5)) :}

$$\begin{cases}{{xy}+{yz}\:=\:\mathrm{8}}\\{{yz}+{xz}\:=\:\mathrm{9}}\\{{zx}+{xy}\:=\:\mathrm{5}}\end{cases} \\ $$

Question Number 93077    Answers: 1   Comments: 1

Se f((√x) −1) = x+6, log[f(1)] = ?

$$\:\:\mathrm{Se}\:\:\mathrm{f}\left(\sqrt{\mathrm{x}}\:−\mathrm{1}\right)\:=\:\mathrm{x}+\mathrm{6},\:\:\mathrm{log}\left[\mathrm{f}\left(\mathrm{1}\right)\right]\:=\:? \\ $$

Question Number 92885    Answers: 0   Comments: 10

Question Number 92880    Answers: 1   Comments: 0

solve 8ϰ+4=3(ϰ−1)+7

$$\mathrm{solve}\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\left(\varkappa−\mathrm{1}\right)+\mathrm{7} \\ $$

Question Number 92899    Answers: 0   Comments: 1

y=−2.241x+1.585 how do i find value of x by rearranging

$${y}=−\mathrm{2}.\mathrm{241}{x}+\mathrm{1}.\mathrm{585} \\ $$$${how}\:{do}\:{i}\:{find}\:{value}\:{of}\:{x}\:{by}\:{rearranging} \\ $$

Question Number 92839    Answers: 1   Comments: 0

let a is complex number such that a^(10) + a^5 +1 = 0. find a^(2005) + (1/a^(2005) ) ?

$$\mathrm{let}\:\mathrm{a}\:\mathrm{is}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{a}^{\mathrm{10}} \:+\:\mathrm{a}^{\mathrm{5}} \:+\mathrm{1}\:=\:\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{a}^{\mathrm{2005}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2005}} }\:? \\ $$

Question Number 92835    Answers: 0   Comments: 3

Question Number 92831    Answers: 1   Comments: 5

Question Number 92820    Answers: 1   Comments: 0

a convergent geometric sequence with first term a is such that the sum of the terms after the n^(th) term is three times the n^(th) term, find the common ratio and show that its sum to infinity is 4a.

$${a}\:{convergent}\:{geometric}\:{sequence}\:{with} \\ $$$${first}\:{term}\:{a}\:{is}\:{such}\:{that}\:{the}\:{sum}\:{of} \\ $$$${the}\:{terms}\:{after}\:{the}\:{n}^{{th}} \:{term}\:{is} \\ $$$${three}\:{times}\:{the}\:{n}^{{th}} \:{term},\:{find}\:{the} \\ $$$${common}\:{ratio}\:{and}\:{show}\:{that}\:{its}\: \\ $$$${sum}\:{to}\:{infinity}\:{is}\:\mathrm{4}{a}. \\ $$

Question Number 92778    Answers: 0   Comments: 1

Question Number 92727    Answers: 1   Comments: 0

Solve: x^y = y^x ....... (i) 3^x = 15^y ...... (ii) x ≠ y, x, y ∈ R

$$\mathrm{Solve}:\:\:\:\:\:\mathrm{x}^{\mathrm{y}} \:\:=\:\:\mathrm{y}^{\mathrm{x}} \:\:\:\:\:.......\:\:\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{x}} \:\:=\:\:\mathrm{15}^{\mathrm{y}} \:\:\:\:......\:\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\mathrm{x}\:\:\neq\:\:\mathrm{y},\:\:\:\:\:\:\:\mathrm{x},\:\:\mathrm{y}\:\in\:\mathbb{R} \\ $$

Question Number 92717    Answers: 2   Comments: 5

Question Number 92608    Answers: 0   Comments: 4

Question Number 92566    Answers: 0   Comments: 2

Posting Question with Images Preferably you should type the question. However if you are using pictures then please do the following steps which posting a photo of printed question. A. Use camscanner app to take pictures (search for camscanner in playstore). B. Crop picture so that you only have specifc question that you want to ask in the image.

$$\mathrm{Posting}\:\mathrm{Question}\:\mathrm{with}\:\mathrm{Images} \\ $$$$\mathrm{Preferably}\:\mathrm{you}\:\mathrm{should}\:\mathrm{type}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{However}\:\mathrm{if}\:\mathrm{you}\:\mathrm{are}\:\mathrm{using}\:\mathrm{pictures}\:\mathrm{then} \\ $$$$\mathrm{please}\:\mathrm{do}\:\mathrm{the}\:\mathrm{following}\:\mathrm{steps} \\ $$$$\mathrm{which}\:\mathrm{posting}\:\mathrm{a}\:\mathrm{photo}\:\mathrm{of}\:\mathrm{printed} \\ $$$$\mathrm{question}. \\ $$$$\mathrm{A}.\:\mathrm{Use}\:\mathrm{camscanner}\:\mathrm{app}\:\mathrm{to}\:\mathrm{take}\: \\ $$$$\mathrm{pictures}\:\left(\mathrm{search}\:\mathrm{for}\:\mathrm{camscanner}\:\mathrm{in}\right. \\ $$$$\left.\mathrm{playstore}\right).\: \\ $$$$\mathrm{B}.\:\mathrm{Crop}\:\mathrm{picture}\:\mathrm{so}\:\mathrm{that}\:\mathrm{you}\:\mathrm{only} \\ $$$$\mathrm{have}\:\mathrm{specifc}\:\mathrm{question}\:\mathrm{that}\:\mathrm{you}\:\mathrm{want} \\ $$$$\mathrm{to}\:\mathrm{ask}\:\mathrm{in}\:\mathrm{the}\:\mathrm{image}. \\ $$$$ \\ $$

Question Number 92557    Answers: 0   Comments: 3

If a_1 = 5, a_2 = 13 and a_(n + 2) = 5a_(n + 1) − 6a_n . Find a_n

$$\mathrm{If}\:\:\:\mathrm{a}_{\mathrm{1}} \:\:=\:\:\mathrm{5},\:\:\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{13}\:\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:\:=\:\:\mathrm{5a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} \:−\:\:\mathrm{6a}_{\mathrm{n}} . \\ $$$$\mathrm{Find}\:\:\:\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 92489    Answers: 0   Comments: 0

(3+((cq)/(12b)))s^2 +((6c)/b)s+(((8c^2 )/(3b^2 ))−b)=0 (1+((cq)/(4b)))s^2 +((3c)/b)(1−((cq)/(12b)))s+(((12c^2 )/b^2 )−b)=0 solve simultaneously for q and s in terms of b and c.

$$\left(\mathrm{3}+\frac{{cq}}{\mathrm{12}{b}}\right){s}^{\mathrm{2}} +\frac{\mathrm{6}{c}}{{b}}{s}+\left(\frac{\mathrm{8}{c}^{\mathrm{2}} }{\mathrm{3}{b}^{\mathrm{2}} }−{b}\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}+\frac{{cq}}{\mathrm{4}{b}}\right){s}^{\mathrm{2}} +\frac{\mathrm{3}{c}}{{b}}\left(\mathrm{1}−\frac{{cq}}{\mathrm{12}{b}}\right){s}+\left(\frac{\mathrm{12}{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−{b}\right)=\mathrm{0} \\ $$$${solve}\:{simultaneously}\:{for}\:\boldsymbol{{q}}\:{and}\:\boldsymbol{{s}} \\ $$$${in}\:{terms}\:{of}\:{b}\:{and}\:{c}. \\ $$

Question Number 92488    Answers: 0   Comments: 11

(3x)^(log_b 3) = (5x)^(log_b 5) x = ?

$$\:\left(\mathrm{3x}\right)^{\mathrm{log}_{\mathrm{b}} \:\mathrm{3}} \:=\:\left(\mathrm{5x}\right)^{\mathrm{log}_{\mathrm{b}} \:\mathrm{5}} \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$

Question Number 92448    Answers: 4   Comments: 1

{ ((5^x .6^y = 150)),((5^y .6^x = 180 )) :}

$$\begin{cases}{\mathrm{5}^{\mathrm{x}} .\mathrm{6}^{\mathrm{y}} \:=\:\mathrm{150}}\\{\mathrm{5}^{\mathrm{y}} .\mathrm{6}^{\mathrm{x}} \:=\:\mathrm{180}\:}\end{cases} \\ $$

Question Number 92426    Answers: 0   Comments: 4

If x^2 +2xy=0 find y

$$\mathrm{If}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}=\mathrm{0}\:\mathrm{find}\:\mathrm{y} \\ $$

  Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com