Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 259

Question Number 83910    Answers: 2   Comments: 1

find all 6 digit numbers which are not only palindrome but also divisible by 495.

$$\mathrm{find}\:\mathrm{all}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{only}\:\mathrm{palindrome}\:\mathrm{but}\:\mathrm{also}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{495}. \\ $$

Question Number 83874    Answers: 1   Comments: 1

Question Number 83871    Answers: 0   Comments: 4

If equation { (((√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))=10)),((x+2y= 5z)) :} has solution is (a,b,c). find a+2b+3c

$$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\ $$

Question Number 83834    Answers: 1   Comments: 2

Question Number 83824    Answers: 2   Comments: 1

Question Number 83822    Answers: 1   Comments: 1

Question Number 83791    Answers: 2   Comments: 2

Let x, y are two different real numbers satisfy the equation (√(y+4)) = x−4 and (√(x+4)) = y−4. The value of x^3 +y^3 mod(x^3 y^3 ) is

$$\mathrm{Let}\:\mathrm{x},\:\mathrm{y}\:\mathrm{are}\:\mathrm{two}\:\mathrm{different}\:\mathrm{real} \\ $$$$\mathrm{numbers}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\sqrt{\mathrm{y}+\mathrm{4}}\:=\:\mathrm{x}−\mathrm{4}\:\mathrm{and}\:\sqrt{\mathrm{x}+\mathrm{4}}\:=\:\mathrm{y}−\mathrm{4}. \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \:\mathrm{mod}\left(\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} \right)\:\mathrm{is} \\ $$

Question Number 83787    Answers: 1   Comments: 0

find the value of abc if (√(2+(√(2^2 +(√(2^3 +2^4 +(√(...)))))))) = (((√a)+(√b))/c)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{abc}\:\mathrm{if}\: \\ $$$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}^{\mathrm{2}} +\sqrt{\mathrm{2}^{\mathrm{3}} +\mathrm{2}^{\mathrm{4}} +\sqrt{...}}}}\:=\:\frac{\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}}{\mathrm{c}} \\ $$

Question Number 83767    Answers: 2   Comments: 1

Question Number 83759    Answers: 2   Comments: 3

3^x 8^(x/(x+2)) =6

$$\mathrm{3}^{{x}} \:\mathrm{8}^{\frac{{x}}{{x}+\mathrm{2}}} =\mathrm{6} \\ $$

Question Number 83721    Answers: 3   Comments: 8

Question Number 83674    Answers: 1   Comments: 1

Question Number 83672    Answers: 2   Comments: 0

x^2 + (1/x^2 ) = 51 find x

$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\mathrm{51}\: \\ $$$${find}\:{x}\: \\ $$

Question Number 83608    Answers: 1   Comments: 4

((17+x))^(1/(4 )) + ((17−x))^(1/(4 )) = 2 find x

$$\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}+\mathrm{x}}\:+\:\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}−\mathrm{x}}\:=\:\mathrm{2}\: \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$

Question Number 83599    Answers: 0   Comments: 0

Question Number 83590    Answers: 0   Comments: 3

transform the ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 to the polar equation r= ((a(1−e^2 ))/(1+ecosθ)) a: semimajor axis e: eccentricity

$${transform}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:{to} \\ $$$${the}\:{polar}\:{equation}\:{r}=\:\frac{{a}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}{\mathrm{1}+{ecos}\theta} \\ $$$${a}:\:{semimajor}\:{axis} \\ $$$${e}:\:{eccentricity} \\ $$

Question Number 83570    Answers: 2   Comments: 3

Find the locus of a point which moves such that its distance from the line y = 4 is a constant k.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{a}\:\mathrm{point}\:\mathrm{which}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{line}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{4}\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\:\:\mathrm{k}. \\ $$

Question Number 83554    Answers: 1   Comments: 0

Question Number 83543    Answers: 1   Comments: 2

Question Number 83542    Answers: 2   Comments: 0

Question Number 83621    Answers: 2   Comments: 1

∣ x+(1/x)∣ < 4 find the solution

$$\mid\:{x}+\frac{\mathrm{1}}{{x}}\mid\:<\:\mathrm{4}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$

Question Number 83512    Answers: 1   Comments: 0

find the solution ((4x^2 )/((1−(√(2x+1)))^2 )) < 2x+9

$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\frac{\mathrm{4x}^{\mathrm{2}} }{\left(\mathrm{1}−\sqrt{\mathrm{2x}+\mathrm{1}}\right)^{\mathrm{2}} }\:<\:\mathrm{2x}+\mathrm{9} \\ $$

Question Number 83477    Answers: 0   Comments: 1

a^b +b^a =1 a=? , b=? a≠b≠0

$${a}^{{b}} +{b}^{{a}} =\mathrm{1}\:\:\:{a}=?\:,\:{b}=? \\ $$$${a}\neq{b}\neq\mathrm{0} \\ $$

Question Number 83473    Answers: 1   Comments: 0

solve in R sin(πln(x))+cos(πln(x))=1

$${solve}\:{in}\:{R} \\ $$$${sin}\left(\pi{ln}\left({x}\right)\right)+{cos}\left(\pi{ln}\left({x}\right)\right)=\mathrm{1} \\ $$

Question Number 83378    Answers: 0   Comments: 2

x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 find x^4 +y^4 +z^4 =?

$${x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{3} \\ $$$${find} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =? \\ $$

Question Number 83373    Answers: 0   Comments: 4

  Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com