Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 259

Question Number 90661    Answers: 2   Comments: 0

show that (n^4 −n^2 ) is divisible by 12

$${show}\:{that}\:\left({n}^{\mathrm{4}} −{n}^{\mathrm{2}} \right)\:{is}\:{divisible}\:{by}\:\mathrm{12} \\ $$

Question Number 90557    Answers: 0   Comments: 7

Find the area enclose by the line y = x − 1 and the parabola y^2 = 2x + 6

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclose}\:\mathrm{by}\:\mathrm{the}\:\mathrm{line}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{x}\:\:−\:\:\mathrm{1}\:\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\:\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{2x}\:\:+\:\:\mathrm{6} \\ $$

Question Number 90550    Answers: 0   Comments: 3

x^4 + (1/x^4 ) = 527 (x−1)(x−2)(x−3)(x−4) ?

$${x}^{\mathrm{4}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{527}\: \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\:?\: \\ $$

Question Number 90483    Answers: 0   Comments: 0

prove that/ ((sin^3 a)/(sin b))+((cos^3 a)/(cos b))≥sec(a−b) for all a,b∈ (0,(π/2))

$${prove}\:{that}/\:\frac{{sin}^{\mathrm{3}} {a}}{{sin}\:{b}}+\frac{{cos}^{\mathrm{3}} {a}}{{cos}\:{b}}\geqslant{sec}\left({a}−{b}\right) \\ $$$${for}\:{all}\:{a},{b}\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$

Question Number 90473    Answers: 1   Comments: 2

Question Number 90406    Answers: 2   Comments: 0

If x − (1/x) = 3 x^4 − (1/x^4 ) = ???

$$\mathrm{If}\:\:\:\:\:\:\mathrm{x}\:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}}\:\:\:=\:\:\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\:\:\:=\:\:\:??? \\ $$

Question Number 90379    Answers: 0   Comments: 2

Question Number 90360    Answers: 1   Comments: 1

Question Number 90350    Answers: 1   Comments: 0

n^2 x−5a^2 y^2 −n^2 y^2 +5a^2 x

$${n}^{\mathrm{2}} {x}−\mathrm{5}{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{n}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{5}{a}^{\mathrm{2}} {x} \\ $$

Question Number 90318    Answers: 0   Comments: 0

Please can this be resolve in partial fraction? ((sec^2 x − (2/x^2 ))/((tan x + (1/x))^2 ))

$$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$

Question Number 90251    Answers: 1   Comments: 2

(1/(1!))+((1^2 +2^2 )/(2!))+((1^2 +2^2 +3^2 )/(3!))+.......= ???

$$\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }{\mathrm{3}!}+.......=\:??? \\ $$

Question Number 90240    Answers: 0   Comments: 0

solve (d^2 y/dx^2 )+x(dy/dx)+xy=x^3

$${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{x}\frac{{dy}}{{dx}}+{xy}={x}^{\mathrm{3}} \\ $$$$ \\ $$

Question Number 90225    Answers: 0   Comments: 3

x+y+z = 4 z+t+x = −3 y+z+t = 4 t+x+y = 1 find the value of x^2 +y^2 +z^2 +t^2

$$\mathrm{x}+\mathrm{y}+\mathrm{z}\:=\:\mathrm{4} \\ $$$$\mathrm{z}+\mathrm{t}+\mathrm{x}\:=\:−\mathrm{3} \\ $$$$\mathrm{y}+\mathrm{z}+\mathrm{t}\:=\:\mathrm{4} \\ $$$$\mathrm{t}+\mathrm{x}+\mathrm{y}\:=\:\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} \: \\ $$

Question Number 90212    Answers: 0   Comments: 4

if x^2 = 5x+1 find E = (((x^3 −140) (x^(11) )^(1/(3 )) )/((x^4 +1))^(1/(3 )) )

$${if}\:{x}^{\mathrm{2}} \:=\:\mathrm{5}{x}+\mathrm{1}\: \\ $$$${find}\:{E}\:=\:\frac{\left({x}^{\mathrm{3}} −\mathrm{140}\right)\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{11}} }}{\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{4}} +\mathrm{1}}} \\ $$

Question Number 90195    Answers: 0   Comments: 0

Question Number 90194    Answers: 1   Comments: 0

(x^2 /(x+a))+(√x)=a (a∈R) solve for: x .

$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right) \\ $$$$\mathrm{solve}\:\mathrm{for}:\:\:\mathrm{x}\:\:. \\ $$

Question Number 90178    Answers: 1   Comments: 1

Question Number 90139    Answers: 0   Comments: 3

x = 2021^3 −2019^3 (√((x−2)/6)) = ?

$$\mathrm{x}\:=\:\mathrm{2021}^{\mathrm{3}} −\mathrm{2019}^{\mathrm{3}} \\ $$$$\sqrt{\frac{\mathrm{x}−\mathrm{2}}{\mathrm{6}}}\:=\:? \\ $$

Question Number 90162    Answers: 1   Comments: 0

Question Number 90160    Answers: 1   Comments: 0

Question Number 90103    Answers: 0   Comments: 1

Question Number 90097    Answers: 0   Comments: 1

((√(3+(√8))))^x +((√(3−(√8))))^x = 6

$$\left(\sqrt{\mathrm{3}+\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:+\left(\sqrt{\mathrm{3}−\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:=\:\mathrm{6} \\ $$

Question Number 90086    Answers: 0   Comments: 7

Question Number 90092    Answers: 0   Comments: 1

G((√(x+5))) = x G(x^2 ) = x^a −b find a+b

$$\mathrm{G}\left(\sqrt{\mathrm{x}+\mathrm{5}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{G}\left(\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{x}^{\mathrm{a}} −\mathrm{b} \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{b}\: \\ $$

Question Number 90048    Answers: 1   Comments: 0

5^(√x) −5^(x−7) = 100

$$\mathrm{5}^{\sqrt{\mathrm{x}}} \:−\mathrm{5}^{\mathrm{x}−\mathrm{7}} \:=\:\mathrm{100} \\ $$

Question Number 90038    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (H_n /n^k )=S_k H_q =Σ_(p=1) ^q (1/p) Is there a simple from for S_k

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{{k}} }={S}_{{k}} \:\:\:\:\:\:\:{H}_{{q}} =\underset{{p}=\mathrm{1}} {\overset{{q}} {\sum}}\frac{\mathrm{1}}{{p}} \\ $$$${Is}\:{there}\:{a}\:{simple}\:{from}\:{for}\:{S}_{{k}} \\ $$

  Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com