Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 254
Question Number 96311 Answers: 1 Comments: 0
$$\left(\mathrm{4}+\sqrt{\mathrm{15}}\right)^{{x}} \:+\:\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{{x}} \:=\:\mathrm{62}\: \\ $$$${x}=? \\ $$
Question Number 96296 Answers: 1 Comments: 0
Question Number 96289 Answers: 0 Comments: 1
$$\mathrm{1010}^{{x}} +\mathrm{2020}^{{x}} =\mathrm{4040}^{{x}} \\ $$$${x}=? \\ $$
Question Number 96244 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\mathrm{The}\:\mathrm{line}\:{y}\:=\:{mx}\:\:\mathrm{meets}\:\mathrm{the}\:\mathrm{parabola} \\ $$$$\:\:{y}\:=\:\left({x}\:−\:{a}\right)\left({b}\:−\:{x}\right)\:\mathrm{tangentially}\:\mathrm{where} \\ $$$$\:\:\mathrm{0}\:<\:{a}\:<\:{b}.\:\mathrm{Show}\:\mathrm{that}\:{m}\:=\:\left(\sqrt{{b}}\:−\:\sqrt{{a}}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 96189 Answers: 3 Comments: 0
$$\mathrm{find}\:\mathrm{a}\:\mathrm{common}\:\mathrm{roots}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{quadratic}\:\mathrm{eq} \\ $$$$\mathrm{24x}^{\mathrm{2}} +\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{6x}^{\mathrm{2}} +\mathrm{11x}+\mathrm{p}+\mathrm{2}=\mathrm{0} \\ $$
Question Number 96171 Answers: 0 Comments: 2
$$\left(\mathrm{4}+\sqrt{\mathrm{15}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\:\mathrm{k}\sqrt{\mathrm{6}} \\ $$$$\mathrm{find}\:\mathrm{k}\: \\ $$
Question Number 96131 Answers: 1 Comments: 0
$$\sqrt[{\mathrm{3}\:\:}]{\left({x}+\mathrm{4}\right)^{\mathrm{2}} }\:+\:\mathrm{4}\:\sqrt[{\mathrm{3}\:\:}]{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:+\:\mathrm{5}\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{2}} +{x}−\mathrm{12}}\:=\:\mathrm{0} \\ $$
Question Number 96072 Answers: 1 Comments: 0
$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{24x}+\mathrm{24}\right).\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{24}\right)=\:\mathrm{24x}^{\mathrm{2}} \\ $$
Question Number 96021 Answers: 0 Comments: 1
$$\mathrm{if}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{p}×\mathrm{q}=\mathrm{m}\:\:,\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:. \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{always}\:\mathrm{exists}\:\mathrm{a}\:\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left(\mathrm{we}\:\mathrm{know}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{each}\:\mathrm{has}\:\mathrm{actually}\:\right. \\ $$$$\left.\mathrm{3}\:\mathrm{values}\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} ×\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} .\mathrm{where}\:\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{is}\:\mathrm{real}\:.??\:\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}? \\ $$$$ \\ $$
Question Number 95964 Answers: 0 Comments: 0
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{13}}\\{\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}=\mathrm{2xy}^{\mathrm{2}} }\end{cases} \\ $$
Question Number 95967 Answers: 1 Comments: 1
Question Number 95920 Answers: 3 Comments: 0
$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{54}+\sqrt{\mathrm{x}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{54}−\sqrt{\mathrm{x}}}\:=\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{18}}\: \\ $$$$\mathrm{x}\:=\:?\: \\ $$
Question Number 95919 Answers: 1 Comments: 0
$$ \\ $$$$\int\mathrm{3}^{−\mathrm{4x}^{\mathrm{2}} } \mathrm{dx}=?\:\:\:\:\left(\mathrm{0},\infty\right) \\ $$
Question Number 95898 Answers: 0 Comments: 0
$${x}^{\mathrm{2}} +{xy}+\frac{{y}^{\mathrm{3}} }{\mathrm{3}}=\mathrm{25} \\ $$$$\frac{{y}^{\mathrm{2}} }{\mathrm{3}}+{z}^{\mathrm{2}} =\mathrm{9} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{16} \\ $$$${so}\:{xy}+\mathrm{2}{yz}+\mathrm{3}{zx}=? \\ $$
Question Number 95843 Answers: 1 Comments: 0
$$\frac{\left(\sqrt{\mathrm{3x}−\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} }{\mathrm{x}−\mathrm{3}}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$
Question Number 95789 Answers: 1 Comments: 1
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{semi}−\mathrm{interquartile}\:\mathrm{range}\:\mathrm{of}\: \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{numbers}: \\ $$$$\:\mathrm{15},\:\mathrm{10},\:\mathrm{9},\:\mathrm{15},\:\mathrm{15},\:\mathrm{8},\:\mathrm{10},\:\mathrm{11},\:\mathrm{8},\:\mathrm{12},\:\mathrm{11},\:\mathrm{14}, \\ $$$$\:\mathrm{9}\:\mathrm{and}\:\mathrm{15} \\ $$
Question Number 95767 Answers: 1 Comments: 0
Question Number 95766 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2x}} \:\:−\:\:\mathrm{5x}^{\mathrm{2}} \:\:+\:\:\mathrm{4}\:\:\:=\:\:\:\mathrm{0} \\ $$
Question Number 95765 Answers: 0 Comments: 3
$$\mathrm{Sum}\:\mathrm{the}\:\mathrm{series}: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{40}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{20}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{10}}\:\:+\:\:...\:\:+\:\:\boldsymbol{\mathrm{n}}\right) \\ $$
Question Number 95742 Answers: 2 Comments: 2
$$\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2} \\ $$$$\frac{\mathrm{100}−\mathrm{100}}{\mathrm{100}−\mathrm{100}}=\frac{\mathrm{10}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{10}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }=\frac{\left(\mathrm{10}+\mathrm{10}\right)\left(\mathrm{10}−\mathrm{10}\right)}{\mathrm{10}\left(\mathrm{10}−\mathrm{10}\right)} \\ $$$$\frac{\mathrm{20}}{\mathrm{10}}=\mathrm{2} \\ $$$$\mathrm{where}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mastike} \\ $$
Question Number 95668 Answers: 1 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\mathrm{2}^{\mathrm{1}/\mathrm{4}} .\mathrm{4}^{\mathrm{1}/\mathrm{8}} .\mathrm{8}^{\mathrm{1}/\mathrm{16}} .\mathrm{16}^{\mathrm{1}/\mathrm{32}} .\:\:...\:\:\infty\:\:\:=\:\:\:\mathrm{2} \\ $$
Question Number 95648 Answers: 0 Comments: 8
$$\mathrm{if}\:\mathrm{6}^{\mathrm{x}} =\mathrm{18}\:\mathrm{and}\:\:\mathrm{12}^{\mathrm{y}} =\mathrm{3} \\ $$$$\mathrm{then}\:\:\mathrm{x}=? \\ $$$$\frac{\mathrm{3y}−\mathrm{4}}{\mathrm{y}+\mathrm{4}}\:\:\:\:\:\:\:\:\frac{\mathrm{3y}+\mathrm{2}}{\mathrm{y}+\mathrm{2}}\:\:\:\:\:\:\:\:\frac{\mathrm{3y}−\mathrm{3}}{\mathrm{3y}−\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3y}+\mathrm{1}}{\mathrm{y}+\mathrm{1}} \\ $$
Question Number 95608 Answers: 3 Comments: 2
Question Number 95560 Answers: 1 Comments: 1
Question Number 95502 Answers: 1 Comments: 3
$$\mathrm{6}\:\mathrm{man}\:+\:\mathrm{8}\:\mathrm{woman}\:\Rightarrow\mathrm{working}\:\mathrm{a}\:\mathrm{job}\:\mathrm{in}\:\mathrm{10}\:\mathrm{days} \\ $$$$\mathrm{26}\:\mathrm{man}\:+\:\mathrm{48}\:\mathrm{woman}\:\Rightarrow\:\mathrm{in}\:\mathrm{2}\:\mathrm{days} \\ $$$$\mathrm{if}\:\mathrm{15}\:\mathrm{man}\:+\:\mathrm{20}\:\mathrm{woman}\:\Rightarrow\:??\:\mathrm{days} \\ $$
Question Number 95469 Answers: 0 Comments: 1
$$\left(\mathrm{9b}^{\mathrm{2}} −\mathrm{25}\right) \\ $$$$\mathrm{why}\:\mathrm{is}\:\mathrm{this}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{bracket}\:\mathrm{as}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diffetence}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$
Pg 249 Pg 250 Pg 251 Pg 252 Pg 253 Pg 254 Pg 255 Pg 256 Pg 257 Pg 258
Terms of Service
Privacy Policy
Contact: info@tinkutara.com