Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 253
Question Number 102927 Answers: 3 Comments: 1
$$\mathrm{If}\:\:\:\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{x}\:\:+\:\:\mathrm{1}}\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{Find}\:\:\:\:\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}} \\ $$
Question Number 102548 Answers: 0 Comments: 0
$${if}\:{n}\:{is}\:{a}\:{real}\:{number},{find}\:{the}\:{least}\:{possible}\:{number}\:{of}\:{n},{if} \\ $$$${n}^{\mathrm{2}} −\mathrm{3}{n}+\sqrt{{n}−\mathrm{3}}\:−\sqrt{{n}+\mathrm{3}} \\ $$
Question Number 102490 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} −{bx}−{c}=\mathrm{0}\:\:\:\:\:;\:\:{b},\:{c}\:>\mathrm{0}\:;\:\:\left(\frac{{b}}{\mathrm{3}}\right)^{\mathrm{3}} >\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${To}\:{find}\:{the}\:{three}\:{real}\:{roots}\:{without} \\ $$$${the}\:{use}\:{of}\:{trigonometric}\:{solution} \\ $$$${to}\:{cubic}\:{polynomial}... \\ $$
Question Number 102418 Answers: 1 Comments: 0
Question Number 102278 Answers: 3 Comments: 4
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{without} \\ $$$$\mathrm{actually}\:\mathrm{expand}. \\ $$$$\left(\mathrm{i}\right)\:\:\:\:\:\:\:\:\left(\mathrm{5}\:\:−\:\:\mathrm{3x}\right)^{\mathrm{10}} \\ $$$$\left(\mathrm{ii}\right)\:\:\:\:\:\:\:\:\left(\mathrm{5}\:\:+\:\:\mathrm{3x}\right)^{−\:\mathrm{10}} \\ $$
Question Number 102201 Answers: 0 Comments: 0
Question Number 102186 Answers: 0 Comments: 0
Question Number 102179 Answers: 1 Comments: 0
Question Number 102178 Answers: 1 Comments: 0
Question Number 102109 Answers: 0 Comments: 0
Question Number 102078 Answers: 5 Comments: 0
Question Number 102002 Answers: 0 Comments: 6
Question Number 101971 Answers: 0 Comments: 2
Question Number 101961 Answers: 0 Comments: 4
Question Number 101951 Answers: 0 Comments: 3
Question Number 101921 Answers: 1 Comments: 1
$$\boldsymbol{{Please}},\:\boldsymbol{{help}}\:\:\boldsymbol{{i}}\:\:\boldsymbol{{cannot}}\:\boldsymbol{{solve}}\:\boldsymbol{{problems}} \\ $$$$\boldsymbol{{such}}\:\boldsymbol{{as}}:\:\boldsymbol{{x}}^{\mathrm{4}} =\mathrm{1},\:\boldsymbol{{x}}^{\mathrm{5}} =\mathrm{1},\:\boldsymbol{{or}}\:\boldsymbol{{x}}^{\boldsymbol{{n}}} =\mathrm{1}\:\boldsymbol{{n}}\in\mathbb{N}... \\ $$
Question Number 101803 Answers: 1 Comments: 2
$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{{x}} +\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{{x}} =\left(\sqrt{\mathrm{6}}\right)^{{x}} \\ $$
Question Number 101800 Answers: 1 Comments: 3
Question Number 101742 Answers: 3 Comments: 0
$$\begin{cases}{{ab}+{a}+{b}\:=\:\mathrm{5}}\\{{bc}\:+\:{b}+{c}\:=\:\mathrm{14}}\\{{ac}\:+\:{a}+{c}\:=\:\mathrm{9}}\end{cases} \\ $$$$\mathrm{find}\:{a}+{b}+{c}\:=\:\_\_\_ \\ $$
Question Number 101693 Answers: 3 Comments: 2
$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identic}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{2}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books} \\ $$$$.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{eight}\:\mathrm{books}\:\mathrm{on}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{book}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}? \\ $$
Question Number 105306 Answers: 1 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{3}}\:}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\sqrt{\mathrm{4}}}+...+\frac{\mathrm{1}}{\mathrm{100}\sqrt{\mathrm{99}}+\mathrm{99}\sqrt{\mathrm{100}}} \\ $$
Question Number 101607 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2x}+\mathrm{7}}+\mathrm{log}_{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=?\:\:\:\:\:\: \\ $$
Question Number 101871 Answers: 1 Comments: 0
$${if}\:{a}_{\mathrm{1}} =\:−\mathrm{4}\:,\:{a}_{\mathrm{2}} =−\mathrm{1}\:{and}\: \\ $$$${a}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} +{a}_{{n}+\mathrm{3}\:} .\:{find}\: \\ $$$${a}_{\mathrm{4}} −{a}_{\mathrm{1}} ? \\ $$
Question Number 101568 Answers: 1 Comments: 0
Question Number 101563 Answers: 2 Comments: 0
Question Number 105345 Answers: 1 Comments: 0
$${If}\:{the}\:{point}\:\left(\sqrt{\mathrm{2}}\:,{p}\right)\:{and}\:\left(−\sqrt{\mathrm{2}},{q}\right) \\ $$$${lie}\:{on}\:{the}\:{graph}\:{y}={x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:{q}−{p}\:=\:\mathrm{3}\:,\:{then}\:{what}\:{the} \\ $$$${value}\:{of}\:{b}\:?\: \\ $$
Pg 248 Pg 249 Pg 250 Pg 251 Pg 252 Pg 253 Pg 254 Pg 255 Pg 256 Pg 257
Terms of Service
Privacy Policy
Contact: info@tinkutara.com