Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 250

Question Number 111586    Answers: 0   Comments: 3

DTM−2020 savollaridan biri. ∫x^x = ? t.me/matematik_olimpiadachilar

$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{DTM}}−\mathrm{2020}\:\:\boldsymbol{{savollaridan}}\:\:\boldsymbol{{biri}}. \\ $$$$\:\int\boldsymbol{{x}}^{\boldsymbol{{x}}} =\:? \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{t}}.\boldsymbol{{me}}/\boldsymbol{{matematik\_olimpiadachilar}} \\ $$

Question Number 111583    Answers: 1   Comments: 0

without using a substitution for 3^x solve the equation 9^x −3^(x + 2) −36 = 0

$$\mathrm{without}\:\mathrm{using}\:\mathrm{a}\:\mathrm{substitution}\:\mathrm{for}\:\mathrm{3}^{{x}} \:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\mathrm{9}^{{x}} −\mathrm{3}^{{x}\:+\:\mathrm{2}} −\mathrm{36}\:=\:\mathrm{0} \\ $$

Question Number 111560    Answers: 2   Comments: 1

Question Number 111534    Answers: 2   Comments: 0

If x=((1+(√(2016)))/2), then 4x^3 −2019x−2017 equals?

$$\mathrm{If}\:\mathrm{x}=\frac{\mathrm{1}+\sqrt{\mathrm{2016}}}{\mathrm{2}},\:\mathrm{then} \\ $$$$\mathrm{4x}^{\mathrm{3}} −\mathrm{2019x}−\mathrm{2017}\:\mathrm{equals}? \\ $$

Question Number 111365    Answers: 0   Comments: 0

Question Number 111344    Answers: 0   Comments: 3

(√3)!=?

$$\sqrt{\mathrm{3}}!=? \\ $$

Question Number 111343    Answers: 0   Comments: 1

i!=?

$${i}!=? \\ $$

Question Number 111208    Answers: 1   Comments: 3

let p a prime number s.t p≥7 and a=333......3_(p−1 times) Show that 11∣a.

$$\:\mathrm{let}\:{p}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{s}.\mathrm{t}\:{p}\geqslant\mathrm{7}\:\mathrm{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\underset{{p}−\mathrm{1}\:{times}} {\mathrm{333}......\mathrm{3}} \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\mathrm{11}\mid{a}. \\ $$

Question Number 111175    Answers: 1   Comments: 0

Question Number 111134    Answers: 0   Comments: 0

Question Number 111062    Answers: 0   Comments: 2

Question Number 111029    Answers: 1   Comments: 0

Question Number 111008    Answers: 0   Comments: 3

((√(x+1))/(y+2)) + ((√(y+2))/(x+1)) =1 => x=?

$$\frac{\sqrt{\boldsymbol{{x}}+\mathrm{1}}}{\boldsymbol{{y}}+\mathrm{2}}\:+\:\frac{\sqrt{\boldsymbol{{y}}+\mathrm{2}}}{\boldsymbol{{x}}+\mathrm{1}}\:=\mathrm{1}\:\:\:\:\:\:=>\:\:\boldsymbol{{x}}=? \\ $$

Question Number 110897    Answers: 3   Comments: 0

(1)4x−4 ≤ ∣x^2 −3x+2 ∣ find the solution set (2) ((1+cos ((α/2))−sin ((α/2)))/(1−cos ((α/2))−sin ((α/2))))=?

$$\left(\mathrm{1}\right)\mathrm{4x}−\mathrm{4}\:\leqslant\:\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}\:\mid\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}=? \\ $$

Question Number 110879    Answers: 0   Comments: 1

Question Number 110843    Answers: 2   Comments: 0

(x+1)^((x+1)) =(√2) find all values of x (Please step by step)

$$\left({x}+\mathrm{1}\right)^{\left({x}+\mathrm{1}\right)} =\sqrt{\mathrm{2}}\:\:\:\:\:\:{find}\:{all}\:{values}\:{of}\:{x} \\ $$$$\left({Please}\:{step}\:{by}\:{step}\right) \\ $$

Question Number 110837    Answers: 0   Comments: 0

Question Number 110799    Answers: 0   Comments: 0

What is the he minimum value of (√(x^2 +1))+(√((y−x)^2 +25))+(√((z−y)^2 +4))+(√((9−z)^2 +16)) if (x, y and z) ∈ R

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{What}\:{is}\:{the}\:{he}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{\left({y}−{x}\right)^{\mathrm{2}} +\mathrm{25}}+\sqrt{\left({z}−{y}\right)^{\mathrm{2}} +\mathrm{4}}+\sqrt{\left(\mathrm{9}−{z}\right)^{\mathrm{2}} +\mathrm{16}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:\:\left({x},\:{y}\:{and}\:{z}\right)\:\in\:\mathbb{R}\: \\ $$

Question Number 110845    Answers: 1   Comments: 0

(x^2 +3x−10)^(x^3 −9x) = (x^2 +3x−10)^(3x^2 −8x)

$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{10}\right)^{\mathrm{x}^{\mathrm{3}} −\mathrm{9x}} \:=\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{10}\right)^{\mathrm{3x}^{\mathrm{2}} −\mathrm{8x}} \\ $$

Question Number 110728    Answers: 1   Comments: 0

a+b=9 , ab=20 a−b=?

$${a}+{b}=\mathrm{9}\:\:,\:\:{ab}=\mathrm{20}\:\:\:\:\:{a}−{b}=? \\ $$

Question Number 110727    Answers: 1   Comments: 0

a^2 +b^2 =10 , ab=13 , a^3 +b^3 =?

$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10}\:\:\:,\:\:{ab}=\mathrm{13}\:\:\:,\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =? \\ $$

Question Number 110706    Answers: 0   Comments: 0

Question Number 110675    Answers: 2   Comments: 0

Two polynomials P and Q satisfy P(−2x+Q(x))=Q(−2x+P(x)). Given that Q(x)=x^2 −4 and P(x)=ax+b. Find 2a+b.

$$\mathrm{Two}\:\mathrm{polynomials}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}\:\mathrm{satisfy} \\ $$$$\mathrm{P}\left(−\mathrm{2x}+\mathrm{Q}\left(\mathrm{x}\right)\right)=\mathrm{Q}\left(−\mathrm{2x}+\mathrm{P}\left(\mathrm{x}\right)\right). \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{Q}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{4}\:\mathrm{and} \\ $$$$\mathrm{P}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b}.\:\mathrm{Find}\:\mathrm{2a}+\mathrm{b}. \\ $$

Question Number 110620    Answers: 1   Comments: 0

Question Number 110608    Answers: 0   Comments: 1

(√x) +1=0 Solution (√(x )) = −1 recalled that ϱ^(iΠ) = −1 (√x) =ϱ^(iΠ) x=(ϱ^(iΠ) )^2 ⇒ x=ϱ^(2iΠ) or x= 2cosΠ+isinΠ x has no real value!

$$\sqrt{{x}}\:+\mathrm{1}=\mathrm{0} \\ $$$${Solution} \\ $$$$\sqrt{{x}\:}\:=\:−\mathrm{1} \\ $$$${recalled}\:{that}\:\varrho^{{i}\Pi} =\:−\mathrm{1} \\ $$$$\sqrt{{x}}\:=\varrho^{{i}\Pi} \\ $$$${x}=\left(\varrho^{{i}\Pi} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\varrho^{\mathrm{2}{i}\Pi} \\ $$$${or}\:{x}=\:\mathrm{2}{cos}\Pi+{isin}\Pi \\ $$$${x}\:{has}\:{no}\:{real}\:{value}! \\ $$

Question Number 110704    Answers: 3   Comments: 0

Find the minimum value of ((n^2 +1)/n)+(n/(n^2 +1)),n>0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}},\mathrm{n}>\mathrm{0} \\ $$

  Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com