Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 250
Question Number 92219 Answers: 0 Comments: 5
Question Number 92211 Answers: 1 Comments: 1
$$\mathrm{4x}\:=\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\:\right)\: \\ $$
Question Number 92196 Answers: 0 Comments: 4
$$\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:=\:\:\mathrm{72} \\ $$$$\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}\:\:} =\:\:\mathrm{108} \\ $$$$\mathrm{Please}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}\:\mathrm{correct}\:\mathrm{answer}\:\mathrm{for} \\ $$$$\mathrm{this}\:\mathrm{question}\:\mathrm{using}\:\mathrm{a}\:\mathrm{method}\:\mathrm{proposed}\:. \\ $$
Question Number 92191 Answers: 0 Comments: 1
$$\lceil\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rceil\: \\ $$$$\lfloor\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rfloor\: \\ $$$$\lceil\:\sqrt[{\mathrm{6}\:\:}]{\mathrm{1256}\:}\:\rceil\: \\ $$
Question Number 92187 Answers: 1 Comments: 1
$$\mathrm{4x}\:=\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{10}\:\right) \\ $$
Question Number 92193 Answers: 0 Comments: 2
$$−\mathrm{2345}\:\left(\mathrm{mod}\:\mathrm{6}\right)\: \\ $$$$−\mathrm{5400}\:\left(\:\mathrm{mod}\:\mathrm{11}\right)\: \\ $$
Question Number 92151 Answers: 0 Comments: 1
$$\mathrm{If}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\mathrm{pq}\:+\:\mathrm{2p}+\mathrm{2q}\:=\:\mathrm{217}\: \\ $$$$\mathrm{find}\:\mathrm{p}+\mathrm{q}\: \\ $$
Question Number 92146 Answers: 1 Comments: 1
$${how}\:{do}\:{i}\:{find}\:{integers}\:{that}\:{satisfy} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2017} \\ $$
Question Number 92137 Answers: 0 Comments: 2
$$\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}} \\ $$
Question Number 92102 Answers: 2 Comments: 3
$${how}\:{can}\:{we}\:{factorize}\:\:\:{x}^{\mathrm{5}} −\mathrm{1}\:\:? \\ $$
Question Number 92084 Answers: 1 Comments: 0
Question Number 92013 Answers: 1 Comments: 10
$$\mathrm{Solve}: \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:\:=\:\:\mathrm{72}\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}} \:\:\:=\:\:\mathrm{108}\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$
Question Number 92008 Answers: 0 Comments: 1
$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series}:\:\:\mathrm{1}\:\:+\:\:\frac{\mathrm{3}}{\mathrm{4}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\:\:+\:\:...\:\:\:\:\mathrm{is}\:? \\ $$
Question Number 92000 Answers: 1 Comments: 0
$$\mathrm{proof}\:\mathrm{0}!!=\mathrm{1} \\ $$
Question Number 91936 Answers: 0 Comments: 6
$${how}\:{to}\:{evaluate}\:{ln}\left({i}\right),\:{i}=\sqrt{−\mathrm{1}}. \\ $$
Question Number 91872 Answers: 0 Comments: 3
$${solve}\:{in}\:\mathbb{R} \\ $$$$\mathrm{8}\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}+\mathrm{5}\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}=\mathrm{7x}^{\mathrm{2}} +\mathrm{12} \\ $$
Question Number 91870 Answers: 0 Comments: 5
$$\:\frac{\overset{\:} {\mathrm{1}}}{\mathrm{x}^{\mathrm{2x}} }\:+\:\mathrm{x}^{−\mathrm{4x}} \:=\:\mathrm{6},\:\:\left(\mathrm{x}\:\neq\:\mathrm{0}\right) \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:\underset{\:} {?} \\ $$
Question Number 91850 Answers: 0 Comments: 3
Question Number 91843 Answers: 2 Comments: 5
$$\begin{cases}{\frac{\mathrm{1}}{{x}}+{y}\:=\:\mathrm{2}}\\{{x}+\frac{\mathrm{1}}{{y}}\:=\:\mathrm{3}}\end{cases} \\ $$$${find}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Question Number 91786 Answers: 0 Comments: 7
$${repost}\:{question}\:{from} \\ $$$${mr}\:{jagoll} \\ $$$$\begin{cases}{\mathrm{2}+\mathrm{6}{y}\:=\:\frac{{x}}{{y}}−\sqrt{{x}−\mathrm{2}{y}}}\\{\sqrt{{x}+\sqrt{{x}−\mathrm{2}{y}}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:}\end{cases} \\ $$
Question Number 91732 Answers: 0 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x} \\ $$$$\:\:\:\:\mathrm{8x}\:\equiv\:\mathrm{24}\:\left(\mathrm{mod}\:\mathrm{16}\right)\:\:\:\:\:....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\mathrm{3x}\:\equiv\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{25}\right)\:\:\:\:\:\:....\:\left(\mathrm{ii}\right) \\ $$
Question Number 91744 Answers: 1 Comments: 1
Question Number 91688 Answers: 0 Comments: 2
$${solve}\:{equations}\:{x}^{{x}\:} +\:{y}^{{y}} \:=\:\mathrm{31}\:{and}\:{x}\:+\:{y}\:=\:\mathrm{5} \\ $$
Question Number 91660 Answers: 0 Comments: 4
Question Number 91647 Answers: 1 Comments: 0
$${solve} \\ $$$${x}\lfloor{x}\lfloor{x}\lfloor{x}\rfloor\rfloor\rfloor=\mathrm{2020} \\ $$
Question Number 91599 Answers: 0 Comments: 1
Pg 245 Pg 246 Pg 247 Pg 248 Pg 249 Pg 250 Pg 251 Pg 252 Pg 253 Pg 254
Terms of Service
Privacy Policy
Contact: info@tinkutara.com