Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 250

Question Number 92219    Answers: 0   Comments: 5

Question Number 92211    Answers: 1   Comments: 1

4x = 2 (mod 3 )

$$\mathrm{4x}\:=\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\:\right)\: \\ $$

Question Number 92196    Answers: 0   Comments: 4

2^x + 3^y = 72 2^y + 3^(x ) = 108 Please am not getting correct answer for this question using a method proposed .

$$\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:=\:\:\mathrm{72} \\ $$$$\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}\:\:} =\:\:\mathrm{108} \\ $$$$\mathrm{Please}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}\:\mathrm{correct}\:\mathrm{answer}\:\mathrm{for} \\ $$$$\mathrm{this}\:\mathrm{question}\:\mathrm{using}\:\mathrm{a}\:\mathrm{method}\:\mathrm{proposed}\:. \\ $$

Question Number 92191    Answers: 0   Comments: 1

⌈ ((30))^(1/(3 )) ⌉ ⌊ ((30))^(1/(3 )) ⌋ ⌈ ((1256 ))^(1/(6 )) ⌉

$$\lceil\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rceil\: \\ $$$$\lfloor\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{30}}\:\rfloor\: \\ $$$$\lceil\:\sqrt[{\mathrm{6}\:\:}]{\mathrm{1256}\:}\:\rceil\: \\ $$

Question Number 92187    Answers: 1   Comments: 1

4x = 6 (mod 10 )

$$\mathrm{4x}\:=\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{10}\:\right) \\ $$

Question Number 92193    Answers: 0   Comments: 2

−2345 (mod 6) −5400 ( mod 11)

$$−\mathrm{2345}\:\left(\mathrm{mod}\:\mathrm{6}\right)\: \\ $$$$−\mathrm{5400}\:\left(\:\mathrm{mod}\:\mathrm{11}\right)\: \\ $$

Question Number 92151    Answers: 0   Comments: 1

If p and q are positive integers such that the value pq + 2p+2q = 217 find p+q

$$\mathrm{If}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\mathrm{pq}\:+\:\mathrm{2p}+\mathrm{2q}\:=\:\mathrm{217}\: \\ $$$$\mathrm{find}\:\mathrm{p}+\mathrm{q}\: \\ $$

Question Number 92146    Answers: 1   Comments: 1

how do i find integers that satisfy x^2 −y^2 =2017

$${how}\:{do}\:{i}\:{find}\:{integers}\:{that}\:{satisfy} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2017} \\ $$

Question Number 92137    Answers: 0   Comments: 2

∫((2x)/(1+x))

$$\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}} \\ $$

Question Number 92102    Answers: 2   Comments: 3

how can we factorize x^5 −1 ?

$${how}\:{can}\:{we}\:{factorize}\:\:\:{x}^{\mathrm{5}} −\mathrm{1}\:\:? \\ $$

Question Number 92084    Answers: 1   Comments: 0

Question Number 92013    Answers: 1   Comments: 10

Solve: 2^x + 3^y = 72 ..... (i) 2^y + 3^x = 108 ..... (ii)

$$\mathrm{Solve}: \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:\:=\:\:\mathrm{72}\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}} \:\:\:=\:\:\mathrm{108}\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Question Number 92008    Answers: 0   Comments: 1

Sum of infinite series: 1 + (3/4) + ((3.5)/(4.8)) + ((3.5.7)/(4.8.12)) + ... is ?

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series}:\:\:\mathrm{1}\:\:+\:\:\frac{\mathrm{3}}{\mathrm{4}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\:\:+\:\:...\:\:\:\:\mathrm{is}\:? \\ $$

Question Number 92000    Answers: 1   Comments: 0

proof 0!!=1

$$\mathrm{proof}\:\mathrm{0}!!=\mathrm{1} \\ $$

Question Number 91936    Answers: 0   Comments: 6

how to evaluate ln(i), i=(√(−1)).

$${how}\:{to}\:{evaluate}\:{ln}\left({i}\right),\:{i}=\sqrt{−\mathrm{1}}. \\ $$

Question Number 91872    Answers: 0   Comments: 3

solve in R 8(√(x^4 +1))+5(√(x^3 +1))=7x^2 +12

$${solve}\:{in}\:\mathbb{R} \\ $$$$\mathrm{8}\sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}+\mathrm{5}\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}=\mathrm{7x}^{\mathrm{2}} +\mathrm{12} \\ $$

Question Number 91870    Answers: 0   Comments: 5

(1^ /x^(2x) ) + x^(−4x) = 6, (x ≠ 0) x = ?_

$$\:\frac{\overset{\:} {\mathrm{1}}}{\mathrm{x}^{\mathrm{2x}} }\:+\:\mathrm{x}^{−\mathrm{4x}} \:=\:\mathrm{6},\:\:\left(\mathrm{x}\:\neq\:\mathrm{0}\right) \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:\underset{\:} {?} \\ $$

Question Number 91850    Answers: 0   Comments: 3

Question Number 91843    Answers: 2   Comments: 5

{ (((1/x)+y = 2)),((x+(1/y) = 3)) :} find x^2 +y^2

$$\begin{cases}{\frac{\mathrm{1}}{{x}}+{y}\:=\:\mathrm{2}}\\{{x}+\frac{\mathrm{1}}{{y}}\:=\:\mathrm{3}}\end{cases} \\ $$$${find}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$

Question Number 91786    Answers: 0   Comments: 7

repost question from mr jagoll { ((2+6y = (x/y)−(√(x−2y)))),(((√(x+(√(x−2y)))) = x+3y−2 )) :}

$${repost}\:{question}\:{from} \\ $$$${mr}\:{jagoll} \\ $$$$\begin{cases}{\mathrm{2}+\mathrm{6}{y}\:=\:\frac{{x}}{{y}}−\sqrt{{x}−\mathrm{2}{y}}}\\{\sqrt{{x}+\sqrt{{x}−\mathrm{2}{y}}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:}\end{cases} \\ $$

Question Number 91732    Answers: 0   Comments: 2

Find the least possible value of x 8x ≡ 24 (mod 16) .... (i) 3x ≡ 6 (mod 25) .... (ii)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x} \\ $$$$\:\:\:\:\mathrm{8x}\:\equiv\:\mathrm{24}\:\left(\mathrm{mod}\:\mathrm{16}\right)\:\:\:\:\:....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\mathrm{3x}\:\equiv\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{25}\right)\:\:\:\:\:\:....\:\left(\mathrm{ii}\right) \\ $$

Question Number 91744    Answers: 1   Comments: 1

Question Number 91688    Answers: 0   Comments: 2

solve equations x^(x ) + y^y = 31 and x + y = 5

$${solve}\:{equations}\:{x}^{{x}\:} +\:{y}^{{y}} \:=\:\mathrm{31}\:{and}\:{x}\:+\:{y}\:=\:\mathrm{5} \\ $$

Question Number 91660    Answers: 0   Comments: 4

Question Number 91647    Answers: 1   Comments: 0

solve x⌊x⌊x⌊x⌋⌋⌋=2020

$${solve} \\ $$$${x}\lfloor{x}\lfloor{x}\lfloor{x}\rfloor\rfloor\rfloor=\mathrm{2020} \\ $$

Question Number 91599    Answers: 0   Comments: 1

  Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com