Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 250

Question Number 105234    Answers: 0   Comments: 0

f:R→R x,y∈R f(f(x)f(y))+f(x+y)=f(xy) f(x)=?

$${f}:\mathbb{R}\rightarrow\mathbb{R}\:\:{x},{y}\in\mathbb{R} \\ $$$${f}\left({f}\left({x}\right){f}\left({y}\right)\right)+{f}\left({x}+{y}\right)={f}\left({xy}\right) \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 105222    Answers: 0   Comments: 0

Question Number 105189    Answers: 0   Comments: 2

Question Number 105158    Answers: 4   Comments: 0

{ ((xy+x+y = 20)),((x^2 +y^2 = 40)) :}find x and y

$$\begin{cases}{{xy}+{x}+{y}\:=\:\mathrm{20}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:=\:\mathrm{40}}\end{cases}{find}\:{x}\:{and}\:{y} \\ $$

Question Number 105124    Answers: 1   Comments: 0

x^4 +ax^3 +bx^2 +cx+d=0 Find x.

$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${Find}\:{x}. \\ $$

Question Number 105120    Answers: 1   Comments: 0

f(2f(x)+f(y))=2x+y f:R→R f(x)=? x,y∈R

$${f}\left(\mathrm{2}{f}\left({x}\right)+{f}\left({y}\right)\right)=\mathrm{2}{x}+{y}\:\:\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}\right)=?\:\:\:\:{x},{y}\in\mathbb{R} \\ $$$$ \\ $$

Question Number 105083    Answers: 0   Comments: 0

Question Number 105082    Answers: 0   Comments: 0

Question Number 105023    Answers: 1   Comments: 0

(((x^2 −y^2 )^2 )/((1−x^2 )(y^2 −1)))+(((1−x^2 )^2 )/((x^2 −y^2 )(y^2 −1)))+(((y^2 −1)^2 )/((1−x^2 )(x^2 −y^2 )))=

$$\frac{\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)}= \\ $$$$ \\ $$

Question Number 104973    Answers: 1   Comments: 1

2(√3) + i is a cubic root for 18(√3) + 35i find the other 2 cubic roots

$$\mathrm{2}\sqrt{\mathrm{3}}\:+\:\boldsymbol{{i}}\:\:\:{is}\:{a}\:{cubic}\:{root}\:{for} \\ $$$$\mathrm{18}\sqrt{\mathrm{3}}\:+\:\mathrm{35}\boldsymbol{{i}}\: \\ $$$$\boldsymbol{{find}}\:\:\boldsymbol{{the}}\:\boldsymbol{{other}}\:\mathrm{2}\:\boldsymbol{{cubic}}\:\boldsymbol{{roots}} \\ $$

Question Number 104859    Answers: 2   Comments: 0

Question Number 104832    Answers: 1   Comments: 0

{ ((x+y+(x^2 /y^2 ) = 7)),(((((x−y)x^2 )/y^2 ) = 12 )) :}

$$\begin{cases}{{x}+{y}+\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:=\:\mathrm{7}}\\{\frac{\left({x}−{y}\right){x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:=\:\mathrm{12}\:}\end{cases} \\ $$

Question Number 104782    Answers: 1   Comments: 0

Question Number 104758    Answers: 0   Comments: 0

Question Number 104811    Answers: 2   Comments: 0

Given { ((a+b(√3)−2c = 1)),((3b^2 +c^2 = 2a^2 )),((a^2 +4ac = 5c^2 )) :} find b

$${Given}\:\begin{cases}{{a}+{b}\sqrt{\mathrm{3}}−\mathrm{2}{c}\:=\:\mathrm{1}}\\{\mathrm{3}{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\mathrm{2}{a}^{\mathrm{2}} }\\{{a}^{\mathrm{2}} +\mathrm{4}{ac}\:=\:\mathrm{5}{c}^{\mathrm{2}} }\end{cases} \\ $$$${find}\:{b} \\ $$

Question Number 104717    Answers: 0   Comments: 0

In the a sport camp, 65% children know playing the football,70%−in voleyball,75%−in basketball.What is least number of children who know playing all above three sport games? (Answer 10%)

$$\mathrm{In}\:\mathrm{the}\:\mathrm{a}\:\:\mathrm{sport}\:\mathrm{camp},\:\mathrm{65\%}\:\mathrm{children}\:\mathrm{know} \\ $$$$\mathrm{playing}\:\mathrm{the}\:\mathrm{football},\mathrm{70\%}−\mathrm{in}\:\mathrm{voleyball},\mathrm{75\%}−\mathrm{in} \\ $$$$\mathrm{basketball}.\mathrm{What}\:\mathrm{is}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{children}\:\mathrm{who} \\ $$$$\mathrm{know}\:\mathrm{playing}\:\mathrm{all}\:\mathrm{above}\:\mathrm{three}\:\mathrm{sport}\:\mathrm{games}? \\ $$$$\left(\mathrm{Answer}\:\mathrm{10\%}\right) \\ $$

Question Number 104706    Answers: 1   Comments: 2

find the value of p (pls help) 1^3 +3^3 +5^3 +...+p^3 =8128

$${find}\:{the}\:{value}\:{of}\:\:{p}\:\left({pls}\:{help}\right) \\ $$$$\mathrm{1}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +\mathrm{5}^{\mathrm{3}} +...+{p}^{\mathrm{3}} =\mathrm{8128} \\ $$$$ \\ $$

Question Number 104696    Answers: 1   Comments: 0

Question Number 105301    Answers: 3   Comments: 0

Without using tables or calculator, compare 6^7 and 7^6

$$\mathrm{Without}\:\mathrm{using}\:\mathrm{tables}\:\mathrm{or}\:\mathrm{calculator}, \\ $$$$\:{compare}\:\:\:\mathrm{6}^{\mathrm{7}} \:\mathrm{and}\:\:\:\mathrm{7}^{\mathrm{6}} \\ $$

Question Number 104676    Answers: 3   Comments: 4

Question Number 104657    Answers: 1   Comments: 0

(x+yi)^3 = ((10(2y+8i)^2 )/(3−i)) find x & y

$$\left({x}+{yi}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{10}\left(\mathrm{2}{y}+\mathrm{8}{i}\right)^{\mathrm{2}} }{\mathrm{3}−{i}} \\ $$$${find}\:{x}\:\&\:{y} \\ $$

Question Number 104621    Answers: 1   Comments: 0

(1/((1−x)^2 ))−(4/((1+x)^2 ))=1

$$\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }−\frac{\mathrm{4}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$

Question Number 104588    Answers: 1   Comments: 1

solve in R ((96x−24)/(12x+5))=(√(−144x^2 +72x+7))

$${solve}\:{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{96}{x}−\mathrm{24}}{\mathrm{12}{x}+\mathrm{5}}=\sqrt{−\mathrm{144}{x}^{\mathrm{2}} +\mathrm{72}{x}+\mathrm{7}} \\ $$

Question Number 104517    Answers: 2   Comments: 0

Question Number 104516    Answers: 1   Comments: 1

Question Number 104450    Answers: 1   Comments: 0

(4/(99)) + (7/(999)) + ((11)/(999999)) = ? Can you solve this?

$$\frac{\mathrm{4}}{\mathrm{99}}\:+\:\frac{\mathrm{7}}{\mathrm{999}}\:+\:\frac{\mathrm{11}}{\mathrm{999999}}\:=\:? \\ $$$$\boldsymbol{\mathrm{Can}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}? \\ $$

  Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com