Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 249

Question Number 108917    Answers: 1   Comments: 0

A woman purchased a number of plates for$150.00. Four of the plates got broken while transporting themto her shop. By selling the remaining plates at a profit of $ 1.00 on each, she made a total profit of $6.00. How many plates did she purchase?

$$\mathrm{A}\:\mathrm{woman}\:\mathrm{purchased}\:\mathrm{a}\:\mathrm{number}\:\mathrm{of}\:\mathrm{plates} \\ $$$$\mathrm{for\$150}.\mathrm{00}.\:\mathrm{Four}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plates}\:\mathrm{got}\:\mathrm{broken} \\ $$$$\mathrm{while}\:\mathrm{transporting}\:\mathrm{themto}\:\mathrm{her}\:\mathrm{shop}.\:\mathrm{By}\:\mathrm{selling} \\ $$$$\mathrm{the}\:\mathrm{remaining}\:\mathrm{plates}\:\mathrm{at}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\$\:\mathrm{1}.\mathrm{00}\:\mathrm{on}\:\mathrm{each}, \\ $$$$\mathrm{she}\:\mathrm{made}\:\mathrm{a}\:\mathrm{total}\:\mathrm{profit}\:\mathrm{of}\:\$\mathrm{6}.\mathrm{00}.\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{plates}\:\mathrm{did}\:\mathrm{she}\:\mathrm{purchase}? \\ $$

Question Number 108914    Answers: 1   Comments: 4

Q108815(19/8/20)(unanswer)by 1x.x Given f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8)))) x,a∈R;x,a>0.Prove that 1<f(x)<2 Solution:Put x=tan^2 A,a=tan^2 B(A,B∈[0,(π/2)) f(x)=cosA+cosB+((tanAtanB)/( (√(tan^2 Atan^2 B+8)))) =cosA+cosB+((sinAsinB)/( (√(8cos^2 Acos^2 B+sin^2 Asin^2 B)))) Put cosA=z,cosB=y(z,y∈(0,1])we have f=z+y+((√((1−z^2 )(1−y^2 )))/( (√(8z^2 y^2 +(1−z^2 )(1−y^2 ))))) =z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 ))))) i)First we prove f(x)>1 ⇔z+y+((√((1−z^2 )(1− y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))>1(1) If z+y≥1 then the inequality(1) is true.Consider z+y<1.Put m=1−(z+y)⇔z+y=1−m(0<m≤1) z^2 +y^2 =(z+y)^2 −2zy=(1−m)^2 −2zy (1)⇔(((1−z^2 )(1−y^2 ))/( 9z^2 y^2 +1−(z^2 +y^2 )))>[1−(z+y)]^2 ⇔1+z^2 y^2 −(z^2 +y^2 )>[9z^2 y^2 +1−(z^2 +y^2 )]m^2 1+z^2 y^2 −[1−2m+m^2 −2zy]>[9z^2 y^2 +1−(1−2m+m^2 −2zy)]m^2 ⇔z^2 y^2 +2zy+2m−m^2 >(9z^2 y^2 +2zy+2m−m^2 )m^2 ⇔m^4 −m^2 (9z^2 y^2 +2zy+2m)+(z^2 y^2 +2zy+2m−m^2 )>0 We look at LHS as a quadratic polynomial with respect to “im^2 ” defined on the interval(0;1) and we denote by P(m).By the theorem above the sign of quadratic poly.P(m)>0⇔ Δ_P =(9z^2 y^2 +2zy+2m)^2 −4(z^2 y^2 +2zy+2m−m^2 )<0 ⇔81z^4 y^4 +4z^2 y^2 +4m^2 +36z^3 y^3 +36mz^2 y^2 +8mzy−4(z^2 y^2 +2zy+2m−m^2 )<0 ⇔81z^4 y^4 +36z^3 y^3 +36mz^2 y^2 +8(m−1)zy+8m^2 −8m<0 ⇔8m^2 +(36z^2 y^2 +8zy−8)m+81z^4 y^4 +36z^3 y^3 −8zy<0(3) We look at LHS (3) like as a quadratic polynomial w.r.t “m” and denote by Q(m) We has Q(0)=81(zy)^4 +36(zy)^3 −8zy ≤81t/64+36t/16−8t=225t/64−8t<0 (due to 0< t=zy≤1/4 ) Q(1)=1+36(zy)^2 +8zy−8+81(zy)^4 +36(zy)^3 −8zy =−7+36(zy)^2 +81(zy)^4 +36(zy)^3 ≤ −7+36/16+81/256+36/64<0 (due to zy≤1/4) By the convert theorem above the sign of the quadratic polynomial we infer Q(m)>0 ∀m∈(0;1)which means P(m) has Δ_P <0 ∀m∈(0;1)⇒the inequality (1) proved ii)Now we prove that f(x)<2 ⇔z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))<2(4) ⇔(((1−z^2 )(1−y^2 ))/(9z^2 y^2 +1−(z^2 +y^2 )))<[2−(z+y)]^2 ⇔1+z^2 y^2 −(z^2 +y^2 )<[9z^2 y^2 +1−(z^2 +y^2 )](1+m)^2 (note (1−m=z+y like as above we have −1≤m=1−(z+y)<1 as 0<z+y≤2(∗)) ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )(1+2m+m^2 ) ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )+(9z^2 y^2 +2zy)(2m+m^2 )−m^4 +4m^2 >0 ⇔−m^4 +4m^2 +(9z^2 y^2 +2zy)(2m+m^2 )+8z^2 y^2 >0 ⇔(9m^2 +18m+8)(zy)^2 +2(m^2 +2m)zy−m^4 +4m^2 >0(4) We look at LHS like as a quadratic polynomial w.r.t “zy” and denote by H(t)(set t=zy,0<zy≤(((z+y)/2))≤1) a)The case 9m^2 +18m+8>0 We consider the discriminant Δ_H ′of H(t) Δ_H ′=(m^2 +2m)^2 +(9m^2 +18m+8)(m^4 −4m^2 ) =m^4 +4m^3 +4m^2 +9m^6 +18m^5 −28m^4 −72m^3 −32m^2 =9m^6 +18m^5 −27m^4 −68m^3 −28m^2 =m^2 (9m^4 +18m^3 −27m^2 −68m−28) <0( due to ∣m∣≤1). Therefore,we infer H(t)>0∀t∈(0;1]which means the inequality (4)is proved ,so f(x)<2 b)The case 9m^2 +18m+8 < 0 ⇔−1<m<−2/3 .We have { ((H(0)=−m^4 +4m^2 =m^2 (4−m^2 )>0 )),((H(1)=−m^4 +15m^2 +22m+8=)),(((1+m)(−m^3 +m^2 +14m+8)>0)) :} By the convert theorem above the sign of the quadratic polynomial we infer H(t)>0 ∀t=zy∈(0;1)⇒(4)is proved which means we ger f(2)<2 other way: Similar to the case i)Rewrite H(t) in the form H(m^2 )as the quadratic poly. w.r.t “m^2 ” with the highest efficient k=(−1)we get H(0)>0,H(1)>0 ⇒kH(0)<0,kH(1)<0⇒H(m)>0 ∀m^2 ∈[0,1]⇔m∈[−1,1] From i)and ii)we obtain 1<f(x)<2(q.e.d)

$$ \\ $$$$\mathrm{Q108815}\left(\mathrm{19}/\mathrm{8}/\mathrm{20}\right)\left(\mathrm{unanswer}\right)\mathrm{by}\:\mathrm{1x}.\mathrm{x} \\ $$$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{a}}}+\frac{\sqrt{\mathrm{ax}}}{\:\sqrt{\mathrm{ax}+\mathrm{8}}} \\ $$$$\mathrm{x},\mathrm{a}\in\mathrm{R};\mathrm{x},\mathrm{a}>\mathrm{0}.\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{1}<\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$$$\mathrm{Solution}:\mathrm{Put}\:\mathrm{x}=\mathrm{tan}^{\mathrm{2}} \mathrm{A},\mathrm{a}=\mathrm{tan}^{\mathrm{2}} \mathrm{B}\left(\mathrm{A},\mathrm{B}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\right. \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{tanAtanB}}{\:\sqrt{\mathrm{tan}^{\mathrm{2}} \mathrm{Atan}^{\mathrm{2}} \mathrm{B}+\mathrm{8}}} \\ $$$$=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{sinAsinB}}{\:\sqrt{\mathrm{8cos}^{\mathrm{2}} \mathrm{Acos}^{\mathrm{2}} \mathrm{B}+\mathrm{sin}^{\mathrm{2}} \mathrm{Asin}^{\mathrm{2}} \mathrm{B}}} \\ $$$$\mathrm{Put}\:\mathrm{cosA}=\mathrm{z},\mathrm{cosB}=\mathrm{y}\left(\mathrm{z},\mathrm{y}\in\left(\mathrm{0},\mathrm{1}\right]\right)\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}} \\ $$$$=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}} \\ $$$$\left.\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{First}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)>\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\:\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}>\mathrm{1}\left(\mathrm{1}\right) \\ $$$$\mathrm{If}\:\mathrm{z}+\mathrm{y}\geqslant\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{inequality}\left(\mathrm{1}\right)\:\mathrm{is} \\ $$$$\mathrm{true}.\mathrm{Consider}\:\mathrm{z}+\mathrm{y}<\mathrm{1}.\mathrm{Put} \\ $$$$\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\Leftrightarrow\mathrm{z}+\mathrm{y}=\mathrm{1}−\mathrm{m}\left(\mathrm{0}<\mathrm{m}\leqslant\mathrm{1}\right) \\ $$$$\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\left(\mathrm{z}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2zy}=\left(\mathrm{1}−\mathrm{m}\right)^{\mathrm{2}} −\mathrm{2zy} \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\:\:\:\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}>\left[\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\mathrm{m}^{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left[\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right]>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right)\right]\mathrm{m}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} >\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\mathrm{m}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{m}^{\mathrm{4}} −\mathrm{m}^{\mathrm{2}} \left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)+\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0} \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$$$\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:``\mathrm{im}^{\mathrm{2}} ''\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{interval}\left(\mathrm{0};\mathrm{1}\right) \\ $$$$\:\mathrm{and}\:\mathrm{we}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{P}\left(\mathrm{m}\right).\mathrm{By}\:\mathrm{the}\:\mathrm{theorem} \\ $$$$\mathrm{above}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{quadratic}\:\mathrm{poly}.\mathrm{P}\left(\mathrm{m}\right)>\mathrm{0}\Leftrightarrow \\ $$$$\:\Delta_{\mathrm{P}} =\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{4z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8mzy}−\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8}\left(\mathrm{m}−\mathrm{1}\right)\mathrm{zy}+\mathrm{8m}^{\mathrm{2}} −\mathrm{8m}<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{8m}^{\mathrm{2}} +\left(\mathrm{36z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}\right)\mathrm{m}+\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} −\mathrm{8zy}<\mathrm{0}\left(\mathrm{3}\right) \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\left(\mathrm{3}\right)\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$$$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{m}''\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{Q}\left(\mathrm{m}\right) \\ $$$$\mathrm{We}\:\mathrm{has}\:\mathrm{Q}\left(\mathrm{0}\right)=\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$$$\leqslant\mathrm{81t}/\mathrm{64}+\mathrm{36t}/\mathrm{16}−\mathrm{8t}=\mathrm{225t}/\mathrm{64}−\mathrm{8t}<\mathrm{0} \\ $$$$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{0}<\:\mathrm{t}=\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\:\right) \\ $$$$\mathrm{Q}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}+\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$$$=−\mathrm{7}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} \leqslant \\ $$$$−\mathrm{7}+\mathrm{36}/\mathrm{16}+\mathrm{81}/\mathrm{256}+\mathrm{36}/\mathrm{64}<\mathrm{0}\:\left(\mathrm{due}\:\mathrm{to}\:\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\right) \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{Q}\left(\mathrm{m}\right)>\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\mathrm{which}\:\mathrm{means}\:\mathrm{P}\left(\mathrm{m}\right) \\ $$$$\mathrm{has}\:\Delta_{\mathrm{P}} <\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\: \\ $$$$\mathrm{proved} \\ $$$$\left.\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2} \\ $$$$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}<\mathrm{2}\left(\mathrm{4}\right) \\ $$$$\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}<\left[\mathrm{2}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)<\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\left(\mathrm{1}+\mathrm{m}\right)^{\mathrm{2}} \left(\mathrm{note}\right. \\ $$$$\left(\mathrm{1}−\mathrm{m}=\mathrm{z}+\mathrm{y}\:\mathrm{like}\:\mathrm{as}\:\mathrm{above}\:\mathrm{we}\:\mathrm{have}\right. \\ $$$$\left.−\mathrm{1}\leqslant\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)<\mathrm{1}\:\mathrm{as}\:\mathrm{0}<\mathrm{z}+\mathrm{y}\leqslant\mathrm{2}\left(\ast\right)\right) \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)+\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0} \\ $$$$\Leftrightarrow−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} +\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)+\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} >\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)\mathrm{zy}−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0}\left(\mathrm{4}\right) \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\:\mathrm{LHS}\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$$$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{zy}''\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by} \\ $$$$\mathrm{H}\left(\mathrm{t}\right)\left(\mathrm{set}\:\mathrm{t}=\mathrm{zy},\mathrm{0}<\mathrm{zy}\leqslant\left(\frac{\mathrm{z}+\mathrm{y}}{\mathrm{2}}\right)\leqslant\mathrm{1}\right) \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}>\mathrm{0}\: \\ $$$$\mathrm{We}\:\mathrm{consider}\:\mathrm{the}\:\mathrm{discriminant}\:\Delta_{\mathrm{H}} '\mathrm{of}\:\mathrm{H}\left(\mathrm{t}\right) \\ $$$$\Delta_{\mathrm{H}} '=\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)^{\mathrm{2}} +\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{m}^{\mathrm{4}} −\mathrm{4m}^{\mathrm{2}} \right) \\ $$$$=\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{3}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{28m}^{\mathrm{4}} −\mathrm{72m}^{\mathrm{3}} −\mathrm{32m}^{\mathrm{2}} \\ $$$$=\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{27m}^{\mathrm{4}} −\mathrm{68m}^{\mathrm{3}} −\mathrm{28m}^{\mathrm{2}} \\ $$$$=\mathrm{m}^{\mathrm{2}} \left(\mathrm{9m}^{\mathrm{4}} +\mathrm{18m}^{\mathrm{3}} −\mathrm{27m}^{\mathrm{2}} −\mathrm{68m}−\mathrm{28}\right) \\ $$$$<\mathrm{0}\left(\:\boldsymbol{\mathrm{due}}\:\boldsymbol{\mathrm{to}}\:\mid\boldsymbol{\mathrm{m}}\mid\leqslant\mathrm{1}\right).\:\mathrm{Therefore},\mathrm{we}\: \\ $$$$\mathrm{infer}\:\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\forall\mathrm{t}\in\left(\mathrm{0};\mathrm{1}\right]\mathrm{which}\:\mathrm{means} \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{4}\right)\mathrm{is}\:\:\mathrm{proved}\:,\mathrm{so}\:\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}\:<\:\mathrm{0}\: \\ $$$$\:\Leftrightarrow−\mathrm{1}<\boldsymbol{\mathrm{m}}<−\mathrm{2}/\mathrm{3}\:.\mathrm{We}\:\mathrm{have} \\ $$$$\begin{cases}{\mathrm{H}\left(\mathrm{0}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} =\mathrm{m}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0}\:}\\{\mathrm{H}\left(\mathrm{1}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{15m}^{\mathrm{2}} +\mathrm{22m}+\mathrm{8}=}\\{\left(\mathrm{1}+\mathrm{m}\right)\left(−\mathrm{m}^{\mathrm{3}} +\mathrm{m}^{\mathrm{2}} +\mathrm{14m}+\mathrm{8}\right)>\mathrm{0}}\end{cases} \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\:\forall\mathrm{t}=\mathrm{zy}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\left(\mathrm{4}\right)\mathrm{is}\:\mathrm{proved} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{we}\:\mathrm{ger}\:\mathrm{f}\left(\mathrm{2}\right)<\mathrm{2} \\ $$$$\boldsymbol{\mathrm{other}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\left.\mathrm{Similar}\:\mathrm{to}\:\mathrm{the}\:\mathrm{case}\:\mathrm{i}\right)\mathrm{Rewrite}\:\mathrm{H}\left(\mathrm{t}\right)\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{form}\:\mathrm{H}\left(\mathrm{m}^{\mathrm{2}} \right)\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{poly}. \\ $$$$\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{m}^{\mathrm{2}} ''\:\mathrm{with}\:\mathrm{the}\:\mathrm{highest}\:\mathrm{efficient} \\ $$$$\mathrm{k}=\left(−\mathrm{1}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{H}\left(\mathrm{0}\right)>\mathrm{0},\mathrm{H}\left(\mathrm{1}\right)>\mathrm{0} \\ $$$$\Rightarrow\mathrm{kH}\left(\mathrm{0}\right)<\mathrm{0},\mathrm{kH}\left(\mathrm{1}\right)<\mathrm{0}\Rightarrow\mathrm{H}\left(\mathrm{m}\right)>\mathrm{0} \\ $$$$\forall\mathrm{m}^{\mathrm{2}} \in\left[\mathrm{0},\mathrm{1}\right]\Leftrightarrow\mathrm{m}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$$\left.\boldsymbol{\mathrm{F}}\left.\boldsymbol{\mathrm{rom}}\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{obtain}}\:\mathrm{1}<\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Question Number 108871    Answers: 0   Comments: 0

Question Number 108870    Answers: 2   Comments: 1

Question Number 108825    Answers: 2   Comments: 1

Σ_(n=1) ^(10) (i^n +i^(n+1) )= ?

$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\left({i}^{{n}} +{i}^{{n}+\mathrm{1}} \right)=\:? \\ $$

Question Number 108813    Answers: 0   Comments: 0

lim_(x→∞) (−ln 2.1)^(2x) =? ??????

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(−\mathrm{ln}\:\mathrm{2}.\mathrm{1}\right)^{\mathrm{2x}} =? \\ $$$$?????? \\ $$

Question Number 108802    Answers: 1   Comments: 0

Question Number 108781    Answers: 1   Comments: 0

Question Number 108769    Answers: 1   Comments: 0

((⋰BeMath⋱)/★) Given ((2x)/(2x+6)) = ((5y)/(5y+25)) = ((4z)/(4z+16)) and xy + yz + xz = 188 . Find the solution

$$\:\:\:\frac{\iddots\mathcal{B}{e}\mathcal{M}{ath}\ddots}{\bigstar} \\ $$$$\:\mathrm{G}{iven}\:\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{6}}\:=\:\frac{\mathrm{5}{y}}{\mathrm{5}{y}+\mathrm{25}}\:=\:\frac{\mathrm{4}{z}}{\mathrm{4}{z}+\mathrm{16}} \\ $$$${and}\:{xy}\:+\:{yz}\:+\:{xz}\:=\:\mathrm{188}\:.\:\mathrm{F}{ind}\:{the} \\ $$$${solution} \\ $$

Question Number 108753    Answers: 2   Comments: 4

((⋮BeMath⋮)/△) (((√x) +1)/(x(√x) +x+(√x))) : (1/( (√x) −x^2 )) + x = ?

$$\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\bigtriangleup} \\ $$$$\:\frac{\sqrt{{x}}\:+\mathrm{1}}{{x}\sqrt{{x}}\:+{x}+\sqrt{{x}}}\::\:\frac{\mathrm{1}}{\:\sqrt{{x}}\:−{x}^{\mathrm{2}} }\:+\:{x}\:=\:?\: \\ $$

Question Number 108741    Answers: 2   Comments: 0

Solve x^3 −[x]=3 (x∈R)

$${Solve}\:{x}^{\mathrm{3}} −\left[{x}\right]=\mathrm{3} \\ $$$$\left({x}\in{R}\right) \\ $$

Question Number 108725    Answers: 1   Comments: 0

The ratio of the profit, cost of materials and labour in the production of an article is 5:7:13 respectively. If the cost of materials is $ 840 more than that of labour, find the total cost of producing the article.

$$\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{profit},\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{and}\:\mathrm{labour}\:\mathrm{in}\:\mathrm{the}\:\mathrm{production}\:\mathrm{of}\:\mathrm{an}\:\mathrm{article} \\ $$$$\mathrm{is}\:\mathrm{5}:\mathrm{7}:\mathrm{13}\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{is}\:\$\:\mathrm{840}\:\mathrm{more}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{labour},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{producing}\:\mathrm{the}\:\mathrm{article}. \\ $$

Question Number 108719    Answers: 0   Comments: 0

Question Number 108699    Answers: 0   Comments: 0

Question Number 108628    Answers: 0   Comments: 4

Prove that the inequality ∣cos x∣ ≥ 1 − sin^2 x hold true for all x ∈ R

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{inequality}\:\:\mid\mathrm{cos}\:\mathrm{x}\mid\:\:\geqslant\:\:\:\mathrm{1}\:\:−\:\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\:\:\:\mathrm{hold}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:\:\mathrm{x}\:\in\:\mathbb{R} \\ $$

Question Number 108553    Answers: 0   Comments: 0

If a_1 , a_2 , a_3 , be an AP, then prove that: Σ_(n = 1) ^(2m) (− 1)^(n − 1) a_n ^2 = (m/(2m − 1))(a_n ^2 − a_(2m) ^2 )

$$\mathrm{If}\:\:\:\:\mathrm{a}_{\mathrm{1}} ,\:\:\mathrm{a}_{\mathrm{2}} ,\:\:\mathrm{a}_{\mathrm{3}} ,\:\:\:\:\mathrm{be}\:\mathrm{an}\:\mathrm{AP},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{1}} {\overset{\mathrm{2m}} {\sum}}\:\left(−\:\mathrm{1}\right)^{\mathrm{n}\:\:−\:\:\mathrm{1}} \:\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \:\:\:\:=\:\:\:\frac{\mathrm{m}}{\mathrm{2m}\:\:−\:\:\mathrm{1}}\left(\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \:\:\:−\:\:\mathrm{a}_{\mathrm{2m}} ^{\mathrm{2}} \right) \\ $$

Question Number 108480    Answers: 6   Comments: 0

Question Number 108430    Answers: 1   Comments: 0

Question Number 108422    Answers: 1   Comments: 0

Question Number 109063    Answers: 0   Comments: 1

Question Number 108309    Answers: 2   Comments: 0

((△BeMath△)/∴) Given (√(5+(√(9+2(√(15)))))) +(√(5−(√(9+2(√(15)))))) = x find the value of (x−(1/x))^2

$$\:\:\:\:\:\frac{\bigtriangleup\mathcal{B}{e}\mathcal{M}{ath}\bigtriangleup}{\therefore} \\ $$$${Given}\:\sqrt{\mathrm{5}+\sqrt{\mathrm{9}+\mathrm{2}\sqrt{\mathrm{15}}}}\:+\sqrt{\mathrm{5}−\sqrt{\mathrm{9}+\mathrm{2}\sqrt{\mathrm{15}}}}\:=\:{x} \\ $$$${find}\:{the}\:{value}\:{of}\:\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \\ $$

Question Number 108295    Answers: 3   Comments: 0

((BobHans)/(βo♭)) (1) { (((x+y)(x^2 −y^2 ) = 9)),(((x−y)(x^2 +y^2 ) = 5)) :} find the solution (2) x (dy/dx) = x^2 +y^2 when x=1 give y = 2

$$\:\:\:\:\frac{\mathbb{B}\mathrm{ob}\mathbb{H}\mathrm{ans}}{\beta\mathrm{o}\flat} \\ $$$$\:\left(\mathrm{1}\right)\begin{cases}{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\:=\:\mathrm{9}}\\{\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\:=\:\mathrm{5}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\mathrm{when}\:\mathrm{x}=\mathrm{1}\:\mathrm{give}\:\mathrm{y}\:=\:\mathrm{2}\: \\ $$

Question Number 108291    Answers: 2   Comments: 0

((∥ BeMath ∥)/(°∫ dx°)) (1) Given (x+(√(1+x^2 )))(y+(√(1+y^2 )))=1 find (x+y)^2

$$\:\:\:\frac{\parallel\:\mathcal{B}{e}\mathcal{M}{ath}\:\parallel}{°\int\:{dx}°} \\ $$$$\left(\mathrm{1}\right)\:{Given}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$${find}\:\left({x}+{y}\right)^{\mathrm{2}} \: \\ $$

Question Number 108316    Answers: 3   Comments: 0

((▽BeMath▽)/△) If x^4 +x^2 = ((11)/5) , find the value of Ω = (((x+1)/(x−1)))^(1/3) + (((x−1)/(x+1)))^(1/3)

$$\:\:\:\:\frac{\bigtriangledown\mathcal{B}{e}\mathcal{M}{ath}\bigtriangledown}{\bigtriangleup} \\ $$$${If}\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} \:=\:\frac{\mathrm{11}}{\mathrm{5}}\:,\:{find}\:{the}\:{value}\:{of} \\ $$$$\Omega\:=\:\sqrt[{\mathrm{3}}]{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}\:+\:\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\: \\ $$

Question Number 108270    Answers: 0   Comments: 1

If x, y, z > −1, show that ((1 + x^2 )/(1 + y + z^2 )) + ((1 + y^2 )/(1 + z + x^2 )) + ((1 + z^2 )/(1 + x + y^2 )) ≥ 2

$$\mathrm{If}\:{x},\:{y},\:{z}\:>\:−\mathrm{1},\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{1}\:+\:{x}^{\mathrm{2}} }{\mathrm{1}\:+\:{y}\:+\:{z}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}\:+\:{y}^{\mathrm{2}} }{\mathrm{1}\:+\:{z}\:+\:{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}\:+\:{z}^{\mathrm{2}} }{\mathrm{1}\:+\:{x}\:+\:{y}^{\mathrm{2}} }\:\geqslant\:\mathrm{2} \\ $$

Question Number 108238    Answers: 4   Comments: 0

y=e^x ln(sin2x) (dy/dx)=??

$${y}={e}^{{x}} {ln}\left({sin}\mathrm{2}{x}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=?? \\ $$

  Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com