Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 247

Question Number 107945    Answers: 3   Comments: 0

((○BeMath○)/(∧⌣∧)) { ((x^4 +(1/x^4 ) = 23)),((x^3 −(1/x^3 ) = ?)) :}

$$\:\:\:\:\:\:\frac{\circ\mathbb{B}{e}\mathbb{M}{ath}\circ}{\wedge\smile\wedge} \\ $$$$\:\:\:\begin{cases}{{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{23}}\\{{x}^{\mathrm{3}} −\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:?}\end{cases} \\ $$

Question Number 107867    Answers: 0   Comments: 0

Question Number 107794    Answers: 2   Comments: 0

Question Number 107779    Answers: 1   Comments: 3

Question Number 107690    Answers: 1   Comments: 0

“BeMath“ Let the complex number z satisfies the equation 3(z−1)= i(z+1) (1) find z in the form a+bi where a,b ∈R (2) find the value of ∣z∣ and ∣z−z^∗ ∣

$$\:\:\:\:\:\:\:\:``\mathcal{B}{e}\mathcal{M}{ath}`` \\ $$$${Let}\:{the}\:{complex}\:{number}\:{z}\:{satisfies}\:{the} \\ $$$${equation}\:\mathrm{3}\left({z}−\mathrm{1}\right)=\:{i}\left({z}+\mathrm{1}\right)\: \\ $$$$\left(\mathrm{1}\right)\:{find}\:{z}\:{in}\:{the}\:{form}\:{a}+{bi}\:{where}\:{a},{b}\:\in\mathbb{R}\: \\ $$$$\left(\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\mid{z}\mid\:{and}\:\mid{z}−{z}^{\ast} \mid\: \\ $$$$ \\ $$

Question Number 107674    Answers: 2   Comments: 0

f(x)=(√x)(√x) D_f =???

$${f}\left({x}\right)=\sqrt{{x}}\sqrt{{x}}\:\:\:\:\:\:\:{D}_{{f}} =??? \\ $$

Question Number 107673    Answers: 3   Comments: 0

Question Number 107486    Answers: 3   Comments: 1

∦BeMath∦ (2/5)+(5/(25))+(8/(125))+((11)/(625))+((14)/(3125))+... = ?

$$\:\:\:\:\:\:\nparallel\mathcal{B}{e}\mathcal{M}{ath}\nparallel \\ $$$$\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{5}}{\mathrm{25}}+\frac{\mathrm{8}}{\mathrm{125}}+\frac{\mathrm{11}}{\mathrm{625}}+\frac{\mathrm{14}}{\mathrm{3125}}+...\:=\:? \\ $$

Question Number 107484    Answers: 2   Comments: 0

∦BeMath∦ (√(x+(√(x+(√(x+(√(x+...)))))))) = (√(4(√(4(√(4(√(4...)))))))) x=?

$$\:\:\:\:\:\nparallel\mathcal{B}{e}\mathcal{M}{ath}\nparallel \\ $$$$\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}\:=\:\sqrt{\mathrm{4}\sqrt{\mathrm{4}\sqrt{\mathrm{4}\sqrt{\mathrm{4}...}}}} \\ $$$${x}=?\: \\ $$

Question Number 107483    Answers: 2   Comments: 0

⋇JS⋇ ∣1+(1/x) ∣−∣x−3∣ > 2 find solution set. (A) 3−(√(10)) < x < 2−(√3) ; x≠0 (B) 3−(√(10)) < x < 3+(√(10)) ; x≠0 (C) 3−(√(10)) < x < 2+(√(10)) ; x≠0 (D) 2+(√(10)) < x < 3+(√(10)) ; x≠0 (E) none of these

$$\:\:\:\:\:\:\:\:\divideontimes\mathcal{JS}\divideontimes \\ $$$$\:\:\:\:\:\mid\mathrm{1}+\frac{\mathrm{1}}{{x}}\:\mid−\mid{x}−\mathrm{3}\mid\:>\:\mathrm{2}\: \\ $$$${find}\:{solution}\:{set}. \\ $$$$\left({A}\right)\:\mathrm{3}−\sqrt{\mathrm{10}}\:<\:{x}\:<\:\mathrm{2}−\sqrt{\mathrm{3}}\:;\:{x}\neq\mathrm{0} \\ $$$$\left({B}\right)\:\mathrm{3}−\sqrt{\mathrm{10}}\:<\:{x}\:<\:\mathrm{3}+\sqrt{\mathrm{10}}\:;\:{x}\neq\mathrm{0} \\ $$$$\left({C}\right)\:\mathrm{3}−\sqrt{\mathrm{10}}\:<\:{x}\:<\:\mathrm{2}+\sqrt{\mathrm{10}}\:;\:{x}\neq\mathrm{0} \\ $$$$\left({D}\right)\:\mathrm{2}+\sqrt{\mathrm{10}}\:<\:{x}\:<\:\mathrm{3}+\sqrt{\mathrm{10}}\:;\:{x}\neq\mathrm{0} \\ $$$$\left({E}\right)\:{none}\:{of}\:{these}\: \\ $$

Question Number 107454    Answers: 2   Comments: 0

Given the function f(x) = ((x + 3)/(x−2)) and g(x) = (1/2)xe^x (1) Find the centre of symmetry of f. (2) Define the monotony of g and if possible draw a variation table for g(x). (3) Sketch the function g(x) (4) determine if f and g intersect.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:=\:\frac{{x}\:+\:\mathrm{3}}{{x}−\mathrm{2}}\:\mathrm{and}\:\mathrm{g}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}{xe}^{{x}} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Define}\:\mathrm{the}\:\mathrm{monotony}\:\mathrm{of}\:\mathrm{g}\:\mathrm{and}\:\mathrm{if}\:\mathrm{possible}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{variation} \\ $$$$\mathrm{table}\:\mathrm{for}\:\mathrm{g}\left({x}\right). \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Sketch}\:\mathrm{the}\:\mathrm{function}\:\mathrm{g}\left({x}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{determine}\:\mathrm{if}\:{f}\:\mathrm{and}\:\mathrm{g}\:\mathrm{intersect}. \\ $$

Question Number 107438    Answers: 1   Comments: 0

Question Number 107761    Answers: 0   Comments: 2

Question Number 107385    Answers: 0   Comments: 7

⋰BeMath⋰ Given 6x^2 −6px+14p−2=0 has the roots are u & v where u,v ∉Z If u,v ≥ 1 , then the value of ∣u−v∣ . (a)14 (b)15 (c)16 (d)17 (e) 18

$$\:\:\:\:\:\iddots\mathcal{B}{e}\mathcal{M}{ath}\iddots \\ $$$${Given}\:\mathrm{6}{x}^{\mathrm{2}} −\mathrm{6}{px}+\mathrm{14}{p}−\mathrm{2}=\mathrm{0} \\ $$$${has}\:{the}\:{roots}\:{are}\:\:{u}\:\&\:{v}\:{where}\:{u},{v}\:\notin\mathbb{Z} \\ $$$${If}\:{u},{v}\:\geqslant\:\mathrm{1}\:,\:{then}\:{the}\:{value}\:{of}\:\mid{u}−{v}\mid\:. \\ $$$$\left({a}\right)\mathrm{14}\:\:\:\:\:\left({b}\right)\mathrm{15}\:\:\:\:\:\left({c}\right)\mathrm{16}\:\:\:\:\:\left({d}\right)\mathrm{17}\:\:\:\left({e}\right)\:\mathrm{18} \\ $$

Question Number 107352    Answers: 5   Comments: 0

⊚BeMath⊚ (1)1−(1/(√2)) +(1/(√3))−(1/(√4))+(1/(√5))−(1/(√6))+...=? (2) lim_(x→0) (1+sin x)^(1/x) ?

$$\:\:\:\:\:\:\:\:\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc \\ $$$$\left(\mathrm{1}\right)\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\sqrt{\mathrm{4}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}−\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}+...=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} \:? \\ $$

Question Number 107313    Answers: 2   Comments: 0

{ ((x+y(√x) = ((95)/8))),((y+x(√y) = ((93)/8))) :} . Find (√(xy))

$$\begin{cases}{{x}+{y}\sqrt{{x}}\:=\:\frac{\mathrm{95}}{\mathrm{8}}}\\{{y}+{x}\sqrt{{y}}\:=\:\frac{\mathrm{93}}{\mathrm{8}}}\end{cases}\:.\:\mathcal{F}{ind}\:\sqrt{{xy}} \\ $$

Question Number 107262    Answers: 0   Comments: 0

What is the requirement of last axioms i.e. 1v=v ∀ v∈V in the definition of vector space?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{requirement}\:\mathrm{of}\:\mathrm{last} \\ $$$$\mathrm{axioms}\:\mathrm{i}.\mathrm{e}.\:\mathrm{1}{v}={v}\:\forall\:{v}\in{V}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{definition}\:\mathrm{of}\:\mathrm{vector}\:\mathrm{space}? \\ $$

Question Number 107242    Answers: 4   Comments: 0

...question... prove that: if a,b,c∈R^+ then: ♣ (√a) +(√b)+(√c)> (√(a+b+c)) ♣ ....sincerly yours... ... M.N...

$$\:\:\:\:\:...{question}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}: \\ $$$$\:{if}\:\:{a},{b},{c}\in\mathbb{R}^{+} \:{then}: \\ $$$$\:\:\:\:\:\clubsuit\:\:\:\sqrt{{a}}\:+\sqrt{{b}}+\sqrt{{c}}>\:\sqrt{{a}+{b}+{c}}\:\clubsuit\: \\ $$$$\:\:\:\:\:\:\:....{sincerly}\:{yours}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\mathscr{M}.\mathscr{N}... \\ $$$$\:\: \\ $$

Question Number 107234    Answers: 1   Comments: 0

Question Number 107117    Answers: 2   Comments: 0

Question Number 107073    Answers: 0   Comments: 0

Question Number 107033    Answers: 0   Comments: 0

Question Number 106941    Answers: 1   Comments: 0

Find the maximum value of Σ_(i=1) ^n sin^5 θ_i with Σ_(i=1) ^n sin θ_i =0.

$${Find}\:{the}\:{maximum}\:{value}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}^{\mathrm{5}} \:\theta_{{i}} \\ $$$${with}\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}\:\theta_{{i}} =\mathrm{0}. \\ $$

Question Number 106943    Answers: 3   Comments: 1

Question Number 106907    Answers: 1   Comments: 0

Question Number 106906    Answers: 2   Comments: 0

  Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com