Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 247

Question Number 93077    Answers: 1   Comments: 1

Se f((√x) −1) = x+6, log[f(1)] = ?

$$\:\:\mathrm{Se}\:\:\mathrm{f}\left(\sqrt{\mathrm{x}}\:−\mathrm{1}\right)\:=\:\mathrm{x}+\mathrm{6},\:\:\mathrm{log}\left[\mathrm{f}\left(\mathrm{1}\right)\right]\:=\:? \\ $$

Question Number 92885    Answers: 0   Comments: 10

Question Number 92880    Answers: 1   Comments: 0

solve 8ϰ+4=3(ϰ−1)+7

$$\mathrm{solve}\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\left(\varkappa−\mathrm{1}\right)+\mathrm{7} \\ $$

Question Number 92899    Answers: 0   Comments: 1

y=−2.241x+1.585 how do i find value of x by rearranging

$${y}=−\mathrm{2}.\mathrm{241}{x}+\mathrm{1}.\mathrm{585} \\ $$$${how}\:{do}\:{i}\:{find}\:{value}\:{of}\:{x}\:{by}\:{rearranging} \\ $$

Question Number 92839    Answers: 1   Comments: 0

let a is complex number such that a^(10) + a^5 +1 = 0. find a^(2005) + (1/a^(2005) ) ?

$$\mathrm{let}\:\mathrm{a}\:\mathrm{is}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{a}^{\mathrm{10}} \:+\:\mathrm{a}^{\mathrm{5}} \:+\mathrm{1}\:=\:\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{a}^{\mathrm{2005}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2005}} }\:? \\ $$

Question Number 92835    Answers: 0   Comments: 3

Question Number 92831    Answers: 1   Comments: 5

Question Number 92820    Answers: 1   Comments: 0

a convergent geometric sequence with first term a is such that the sum of the terms after the n^(th) term is three times the n^(th) term, find the common ratio and show that its sum to infinity is 4a.

$${a}\:{convergent}\:{geometric}\:{sequence}\:{with} \\ $$$${first}\:{term}\:{a}\:{is}\:{such}\:{that}\:{the}\:{sum}\:{of} \\ $$$${the}\:{terms}\:{after}\:{the}\:{n}^{{th}} \:{term}\:{is} \\ $$$${three}\:{times}\:{the}\:{n}^{{th}} \:{term},\:{find}\:{the} \\ $$$${common}\:{ratio}\:{and}\:{show}\:{that}\:{its}\: \\ $$$${sum}\:{to}\:{infinity}\:{is}\:\mathrm{4}{a}. \\ $$

Question Number 92778    Answers: 0   Comments: 1

Question Number 92727    Answers: 1   Comments: 0

Solve: x^y = y^x ....... (i) 3^x = 15^y ...... (ii) x ≠ y, x, y ∈ R

$$\mathrm{Solve}:\:\:\:\:\:\mathrm{x}^{\mathrm{y}} \:\:=\:\:\mathrm{y}^{\mathrm{x}} \:\:\:\:\:.......\:\:\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{x}} \:\:=\:\:\mathrm{15}^{\mathrm{y}} \:\:\:\:......\:\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\mathrm{x}\:\:\neq\:\:\mathrm{y},\:\:\:\:\:\:\:\mathrm{x},\:\:\mathrm{y}\:\in\:\mathbb{R} \\ $$

Question Number 92717    Answers: 2   Comments: 5

Question Number 92608    Answers: 0   Comments: 4

Question Number 92566    Answers: 0   Comments: 2

Posting Question with Images Preferably you should type the question. However if you are using pictures then please do the following steps which posting a photo of printed question. A. Use camscanner app to take pictures (search for camscanner in playstore). B. Crop picture so that you only have specifc question that you want to ask in the image.

$$\mathrm{Posting}\:\mathrm{Question}\:\mathrm{with}\:\mathrm{Images} \\ $$$$\mathrm{Preferably}\:\mathrm{you}\:\mathrm{should}\:\mathrm{type}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{However}\:\mathrm{if}\:\mathrm{you}\:\mathrm{are}\:\mathrm{using}\:\mathrm{pictures}\:\mathrm{then} \\ $$$$\mathrm{please}\:\mathrm{do}\:\mathrm{the}\:\mathrm{following}\:\mathrm{steps} \\ $$$$\mathrm{which}\:\mathrm{posting}\:\mathrm{a}\:\mathrm{photo}\:\mathrm{of}\:\mathrm{printed} \\ $$$$\mathrm{question}. \\ $$$$\mathrm{A}.\:\mathrm{Use}\:\mathrm{camscanner}\:\mathrm{app}\:\mathrm{to}\:\mathrm{take}\: \\ $$$$\mathrm{pictures}\:\left(\mathrm{search}\:\mathrm{for}\:\mathrm{camscanner}\:\mathrm{in}\right. \\ $$$$\left.\mathrm{playstore}\right).\: \\ $$$$\mathrm{B}.\:\mathrm{Crop}\:\mathrm{picture}\:\mathrm{so}\:\mathrm{that}\:\mathrm{you}\:\mathrm{only} \\ $$$$\mathrm{have}\:\mathrm{specifc}\:\mathrm{question}\:\mathrm{that}\:\mathrm{you}\:\mathrm{want} \\ $$$$\mathrm{to}\:\mathrm{ask}\:\mathrm{in}\:\mathrm{the}\:\mathrm{image}. \\ $$$$ \\ $$

Question Number 92557    Answers: 0   Comments: 3

If a_1 = 5, a_2 = 13 and a_(n + 2) = 5a_(n + 1) − 6a_n . Find a_n

$$\mathrm{If}\:\:\:\mathrm{a}_{\mathrm{1}} \:\:=\:\:\mathrm{5},\:\:\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{13}\:\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:\:=\:\:\mathrm{5a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} \:−\:\:\mathrm{6a}_{\mathrm{n}} . \\ $$$$\mathrm{Find}\:\:\:\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 92489    Answers: 0   Comments: 0

(3+((cq)/(12b)))s^2 +((6c)/b)s+(((8c^2 )/(3b^2 ))−b)=0 (1+((cq)/(4b)))s^2 +((3c)/b)(1−((cq)/(12b)))s+(((12c^2 )/b^2 )−b)=0 solve simultaneously for q and s in terms of b and c.

$$\left(\mathrm{3}+\frac{{cq}}{\mathrm{12}{b}}\right){s}^{\mathrm{2}} +\frac{\mathrm{6}{c}}{{b}}{s}+\left(\frac{\mathrm{8}{c}^{\mathrm{2}} }{\mathrm{3}{b}^{\mathrm{2}} }−{b}\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}+\frac{{cq}}{\mathrm{4}{b}}\right){s}^{\mathrm{2}} +\frac{\mathrm{3}{c}}{{b}}\left(\mathrm{1}−\frac{{cq}}{\mathrm{12}{b}}\right){s}+\left(\frac{\mathrm{12}{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−{b}\right)=\mathrm{0} \\ $$$${solve}\:{simultaneously}\:{for}\:\boldsymbol{{q}}\:{and}\:\boldsymbol{{s}} \\ $$$${in}\:{terms}\:{of}\:{b}\:{and}\:{c}. \\ $$

Question Number 92488    Answers: 0   Comments: 11

(3x)^(log_b 3) = (5x)^(log_b 5) x = ?

$$\:\left(\mathrm{3x}\right)^{\mathrm{log}_{\mathrm{b}} \:\mathrm{3}} \:=\:\left(\mathrm{5x}\right)^{\mathrm{log}_{\mathrm{b}} \:\mathrm{5}} \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$

Question Number 92448    Answers: 4   Comments: 1

{ ((5^x .6^y = 150)),((5^y .6^x = 180 )) :}

$$\begin{cases}{\mathrm{5}^{\mathrm{x}} .\mathrm{6}^{\mathrm{y}} \:=\:\mathrm{150}}\\{\mathrm{5}^{\mathrm{y}} .\mathrm{6}^{\mathrm{x}} \:=\:\mathrm{180}\:}\end{cases} \\ $$

Question Number 92426    Answers: 0   Comments: 4

If x^2 +2xy=0 find y

$$\mathrm{If}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}=\mathrm{0}\:\mathrm{find}\:\mathrm{y} \\ $$

Question Number 92425    Answers: 0   Comments: 1

If A and B are two different number such that A+B=C and A×B=C find A and B.

$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two} \\ $$$$\mathrm{different}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{A}+\mathrm{B}=\mathrm{C}\:\mathrm{and}\:\mathrm{A}×\mathrm{B}=\mathrm{C} \\ $$$$\mathrm{find}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$

Question Number 92390    Answers: 0   Comments: 2

What is the meaning of this symbol (ε) in limit please. or as used in convergent/divergent series

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{meaning}\:\mathrm{of}\:\mathrm{this}\:\mathrm{symbol}\:\:\left(\varepsilon\right)\:\mathrm{in}\:\mathrm{limit}\:\mathrm{please}. \\ $$$$\mathrm{or}\:\mathrm{as}\:\mathrm{used}\:\mathrm{in}\:\mathrm{convergent}/\mathrm{divergent}\:\mathrm{series} \\ $$

Question Number 92366    Answers: 0   Comments: 3

Question Number 92346    Answers: 3   Comments: 3

solve ((1+(√x)))^(1/3) +((1−(√x)))^(1/3) =(5)^(1/3)

$${solve} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\sqrt[{\mathrm{3}}]{\mathrm{5}} \\ $$

Question Number 92335    Answers: 0   Comments: 0

(√({x})) = 1+ ln(x)

$$\sqrt{\left\{\mathrm{x}\right\}}\:=\:\mathrm{1}+\:\mathrm{ln}\left(\mathrm{x}\right)\: \\ $$

Question Number 92324    Answers: 1   Comments: 0

Find the value of x for which Σ_(n = 0) ^(n = ∞) 16((3/4)x + 1)^n (a) Is convergent (b) Is equal to 10(2/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{for}\:\mathrm{which}\:\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}\:\:=\:\:\infty} {\sum}}\:\mathrm{16}\left(\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}\:\:+\:\:\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{Is}\:\mathrm{convergent} \\ $$$$\left(\mathrm{b}\right)\:\:\:\mathrm{Is}\:\mathrm{equal}\:\mathrm{to}\:\:\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 92283    Answers: 0   Comments: 3

9^x +3^x = 25^x −5^x find (5^x /(3^x +1)) ?

$$\mathrm{9}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{25}^{\mathrm{x}} −\mathrm{5}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\frac{\mathrm{5}^{\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} +\mathrm{1}}\:? \\ $$

Question Number 92279    Answers: 0   Comments: 2

7sin(θ)+2cos^2 (θ)=5 0≤θ≤2π

$$\mathrm{7}{sin}\left(\theta\right)+\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)=\mathrm{5} \\ $$$$ \\ $$$$\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$

  Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com