Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 247

Question Number 113997    Answers: 2   Comments: 0

Question Number 113996    Answers: 1   Comments: 1

Question Number 113975    Answers: 1   Comments: 0

Find the nth term: 1, 0, − 1, 0, 1, 0, − 1, 0, ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}:\:\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:... \\ $$

Question Number 113931    Answers: 1   Comments: 2

∣ x ∣=2⇒ x=2 ∨ x=−2 OR ∣ x ∣=2⇒ x=2 ∧ x=−2 ?

$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\vee\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{OR} \\ $$$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\wedge\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:? \\ $$

Question Number 113913    Answers: 3   Comments: 0

Find the square root of (√(50))+(√(48))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\sqrt{\mathrm{50}}+\sqrt{\mathrm{48}} \\ $$

Question Number 113894    Answers: 2   Comments: 1

Question Number 113885    Answers: 1   Comments: 0

Question Number 113886    Answers: 3   Comments: 0

Question Number 113876    Answers: 4   Comments: 0

If 2^x =4^y =8^z and xyz=288, then find (1/(2x))+(1/(4y))+(1/(8z))

$$\mathrm{If}\:\mathrm{2}^{\mathrm{x}} =\mathrm{4}^{\mathrm{y}} =\mathrm{8}^{\mathrm{z}} \:\mathrm{and}\:\mathrm{xyz}=\mathrm{288},\:\mathrm{then}\:\mathrm{find} \\ $$$$\frac{\mathrm{1}}{\mathrm{2x}}+\frac{\mathrm{1}}{\mathrm{4y}}+\frac{\mathrm{1}}{\mathrm{8z}} \\ $$

Question Number 113854    Answers: 1   Comments: 0

if f(x)=2x^2 −12x+10. (i) sketch the graph of y=∣f(x)∣ for −1≤x≤7. (ii) find the set of values of k for which the equation ∣f(x)∣=k has 4 distinct roots.

$${if}\:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}.\: \\ $$$$\left({i}\right)\:{sketch}\:{the}\:{graph}\:{of}\:{y}=\mid{f}\left({x}\right)\mid\:{for} \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{7}. \\ $$$$\left({ii}\right)\:{find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{k}\:{for} \\ $$$${which}\:{the}\:{equation}\:\mid{f}\left({x}\right)\mid={k}\:{has}\:\mathrm{4} \\ $$$${distinct}\:{roots}. \\ $$

Question Number 113816    Answers: 1   Comments: 1

0.095=h∙((h/(1+2h)))^(2/3) h=? & show the practice

$$\mathrm{0}.\mathrm{095}={h}\centerdot\left(\frac{{h}}{\mathrm{1}+\mathrm{2}{h}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:\:\:\:\:\:\:\:\:{h}=?\:\: \\ $$$$\&\:{show}\:{the}\:{practice} \\ $$

Question Number 113801    Answers: 0   Comments: 3

what is the number that is evenly divisible by 3 and 6 and but not divisible by 2?

$${what}\:{is}\:{the}\:{number}\:{that}\:{is}\:{evenly}\: \\ $$$${divisible}\:{by}\:\mathrm{3}\:{and}\:\mathrm{6}\:{and}\:{but}\:{not}\:{divisible} \\ $$$${by}\:\mathrm{2}? \\ $$

Question Number 113767    Answers: 0   Comments: 1

$$ \\ $$$$ \\ $$

Question Number 113857    Answers: 2   Comments: 0

find the values of k for which the line y=kx−3 does not meet the curve y=2x^2 −3x+k.

$${find}\:{the}\:{values}\:{of}\:{k}\:{for}\:{which}\:{the} \\ $$$${line}\:{y}={kx}−\mathrm{3}\:{does}\:{not}\:{meet}\:{the}\:{curve} \\ $$$${y}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+{k}. \\ $$

Question Number 113510    Answers: 1   Comments: 0

Question Number 113508    Answers: 1   Comments: 2

Question Number 113468    Answers: 0   Comments: 0

Question Number 113465    Answers: 0   Comments: 7

Question Number 113451    Answers: 3   Comments: 0

If 2x=a^n +a^(−n) and 2y=a^n −a^(−n) calculate the value of x^2 −y^(2 ) in its simplest form

$$\mathrm{If}\:\mathrm{2x}=\mathrm{a}^{\mathrm{n}} +\mathrm{a}^{−\mathrm{n}} \:\mathrm{and}\:\mathrm{2y}=\mathrm{a}^{\mathrm{n}} −\mathrm{a}^{−\mathrm{n}} \:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}\:} \:\mathrm{in}\:\mathrm{its}\:\mathrm{simplest}\:\mathrm{form} \\ $$

Question Number 113429    Answers: 0   Comments: 0

Question Number 113407    Answers: 0   Comments: 0

Question Number 113372    Answers: 1   Comments: 2

2^a +2^b +2^c +2^d =57, find a+b+c+d. a≠b≠c≠d and a,b,c,d are positive integers.

$$\mathrm{2}^{\mathrm{a}} +\mathrm{2}^{\mathrm{b}} +\mathrm{2}^{\mathrm{c}} +\mathrm{2}^{\mathrm{d}} =\mathrm{57},\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}. \\ $$$$\mathrm{a}\neq\mathrm{b}\neq\mathrm{c}\neq\mathrm{d}\:\mathrm{and}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{integers}. \\ $$

Question Number 113272    Answers: 2   Comments: 0

Solve the following equations: a)(x^2 −a)^2 −6x^2 +4x+2a=0 b)x^4 −4x^3 −10x^3 +37x−14=0,if it known that the left−hand side of the equation can be decomposed into factors with integral coefficients.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equations}: \\ $$$$\left.\mathrm{a}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{a}\right)^{\mathrm{2}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{2a}=\mathrm{0} \\ $$$$\left.\mathrm{b}\right)\mathrm{x}^{\mathrm{4}} −\mathrm{4x}^{\mathrm{3}} −\mathrm{10x}^{\mathrm{3}} +\mathrm{37x}−\mathrm{14}=\mathrm{0},\mathrm{if}\:\mathrm{it} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{the}\:\mathrm{left}−\mathrm{hand}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{can}\:\mathrm{be}\:\mathrm{decomposed}\:\mathrm{into} \\ $$$$\mathrm{factors}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$

Question Number 113241    Answers: 1   Comments: 0

Question Number 121155    Answers: 0   Comments: 0

Question Number 113188    Answers: 1   Comments: 0

proporsed by m.n july 1790 ∫_0 ^π ln(1−(1/2)sinx)dx

$${proporsed}\:{by}\:{m}.{n}\:{july}\:\mathrm{1790} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}{x}\right){dx} \\ $$

  Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com