“BeMath“
Let the complex number z satisfies the
equation 3(z−1)= i(z+1)
(1) find z in the form a+bi where a,b ∈R
(2) find the value of ∣z∣ and ∣z−z^∗ ∣
Given the function f(x) = ((x + 3)/(x−2)) and g(x) = (1/2)xe^x
(1) Find the centre of symmetry of f.
(2) Define the monotony of g and if possible draw a variation
table for g(x).
(3) Sketch the function g(x)
(4) determine if f and g intersect.