Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 240

Question Number 114189    Answers: 0   Comments: 6

Question Number 114134    Answers: 1   Comments: 4

(m^2 −n^2 +6(n+m)/(m^2 −(6−n)^2 m+n=12

$$\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} +\mathrm{6}\left({n}+{m}\right)/\left({m}^{\mathrm{2}} −\left(\mathrm{6}−{n}\right)^{\mathrm{2}} \right.\right. \\ $$$${m}+{n}=\mathrm{12} \\ $$

Question Number 114110    Answers: 1   Comments: 2

(4/(1!)) + ((11)/(2!)) + ((22)/(3!)) + ((37)/(4!)) + ... = ?

$$\frac{\mathrm{4}}{\mathrm{1}!}\:+\:\frac{\mathrm{11}}{\mathrm{2}!}\:+\:\frac{\mathrm{22}}{\mathrm{3}!}\:+\:\frac{\mathrm{37}}{\mathrm{4}!}\:+\:...\:=\:? \\ $$

Question Number 114077    Answers: 1   Comments: 0

Question Number 114023    Answers: 2   Comments: 1

Σ_(n=1) ^∝ (1/(n^2 −1))=?

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\propto} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$

Question Number 113997    Answers: 2   Comments: 0

Question Number 113996    Answers: 1   Comments: 1

Question Number 113975    Answers: 1   Comments: 0

Find the nth term: 1, 0, − 1, 0, 1, 0, − 1, 0, ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}:\:\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:... \\ $$

Question Number 113931    Answers: 1   Comments: 2

∣ x ∣=2⇒ x=2 ∨ x=−2 OR ∣ x ∣=2⇒ x=2 ∧ x=−2 ?

$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\vee\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{OR} \\ $$$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\wedge\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:? \\ $$

Question Number 113913    Answers: 3   Comments: 0

Find the square root of (√(50))+(√(48))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\sqrt{\mathrm{50}}+\sqrt{\mathrm{48}} \\ $$

Question Number 113894    Answers: 2   Comments: 1

Question Number 113885    Answers: 1   Comments: 0

Question Number 113886    Answers: 3   Comments: 0

Question Number 113876    Answers: 4   Comments: 0

If 2^x =4^y =8^z and xyz=288, then find (1/(2x))+(1/(4y))+(1/(8z))

$$\mathrm{If}\:\mathrm{2}^{\mathrm{x}} =\mathrm{4}^{\mathrm{y}} =\mathrm{8}^{\mathrm{z}} \:\mathrm{and}\:\mathrm{xyz}=\mathrm{288},\:\mathrm{then}\:\mathrm{find} \\ $$$$\frac{\mathrm{1}}{\mathrm{2x}}+\frac{\mathrm{1}}{\mathrm{4y}}+\frac{\mathrm{1}}{\mathrm{8z}} \\ $$

Question Number 113854    Answers: 1   Comments: 0

if f(x)=2x^2 −12x+10. (i) sketch the graph of y=∣f(x)∣ for −1≤x≤7. (ii) find the set of values of k for which the equation ∣f(x)∣=k has 4 distinct roots.

$${if}\:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}.\: \\ $$$$\left({i}\right)\:{sketch}\:{the}\:{graph}\:{of}\:{y}=\mid{f}\left({x}\right)\mid\:{for} \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{7}. \\ $$$$\left({ii}\right)\:{find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{k}\:{for} \\ $$$${which}\:{the}\:{equation}\:\mid{f}\left({x}\right)\mid={k}\:{has}\:\mathrm{4} \\ $$$${distinct}\:{roots}. \\ $$

Question Number 113816    Answers: 1   Comments: 1

0.095=h∙((h/(1+2h)))^(2/3) h=? & show the practice

$$\mathrm{0}.\mathrm{095}={h}\centerdot\left(\frac{{h}}{\mathrm{1}+\mathrm{2}{h}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:\:\:\:\:\:\:\:\:{h}=?\:\: \\ $$$$\&\:{show}\:{the}\:{practice} \\ $$

Question Number 113801    Answers: 0   Comments: 3

what is the number that is evenly divisible by 3 and 6 and but not divisible by 2?

$${what}\:{is}\:{the}\:{number}\:{that}\:{is}\:{evenly}\: \\ $$$${divisible}\:{by}\:\mathrm{3}\:{and}\:\mathrm{6}\:{and}\:{but}\:{not}\:{divisible} \\ $$$${by}\:\mathrm{2}? \\ $$

Question Number 113767    Answers: 0   Comments: 1

$$ \\ $$$$ \\ $$

Question Number 113857    Answers: 2   Comments: 0

find the values of k for which the line y=kx−3 does not meet the curve y=2x^2 −3x+k.

$${find}\:{the}\:{values}\:{of}\:{k}\:{for}\:{which}\:{the} \\ $$$${line}\:{y}={kx}−\mathrm{3}\:{does}\:{not}\:{meet}\:{the}\:{curve} \\ $$$${y}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+{k}. \\ $$

Question Number 113510    Answers: 1   Comments: 0

Question Number 113508    Answers: 1   Comments: 2

Question Number 113468    Answers: 0   Comments: 0

Question Number 113465    Answers: 0   Comments: 7

Question Number 113451    Answers: 3   Comments: 0

If 2x=a^n +a^(−n) and 2y=a^n −a^(−n) calculate the value of x^2 −y^(2 ) in its simplest form

$$\mathrm{If}\:\mathrm{2x}=\mathrm{a}^{\mathrm{n}} +\mathrm{a}^{−\mathrm{n}} \:\mathrm{and}\:\mathrm{2y}=\mathrm{a}^{\mathrm{n}} −\mathrm{a}^{−\mathrm{n}} \:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}\:} \:\mathrm{in}\:\mathrm{its}\:\mathrm{simplest}\:\mathrm{form} \\ $$

Question Number 113429    Answers: 0   Comments: 0

Question Number 113407    Answers: 0   Comments: 0

  Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com