Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 238

Question Number 110725    Answers: 2   Comments: 0

x^x^x^x^(...) =2 x=?

$${x}^{{x}^{{x}^{{x}^{...} } } } =\mathrm{2}\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 110545    Answers: 1   Comments: 2

Question Number 110887    Answers: 1   Comments: 2

Question Number 110715    Answers: 1   Comments: 2

a,b,c,d are unit digits whose pairwise sums form an arithmetic progression. Given that a+b+c+d is even, find the common positive difference of the arithmetic progression.

$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{digits}\:\mathrm{whose} \\ $$$$\mathrm{pairwise}\:\mathrm{sums}\:\mathrm{form}\:\mathrm{an}\:\mathrm{arithmetic} \\ $$$$\mathrm{progression}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}\:\mathrm{is} \\ $$$$\mathrm{even},\:\mathrm{find}\:\mathrm{the}\:\mathrm{common}\:\mathrm{positive} \\ $$$$\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arithmetic} \\ $$$$\mathrm{progression}. \\ $$

Question Number 110490    Answers: 1   Comments: 0

e^(iπ) = −1

$$ \\ $$$${e}^{\mathrm{i}\pi} \:=\:−\mathrm{1} \\ $$

Question Number 110471    Answers: 1   Comments: 0

the sum of all x values (x^2 −6x+9)^((x−3)/(x−1)) = (x−3)^((x−4))

$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{x}\:\mathrm{values} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}\right)^{\frac{{x}−\mathrm{3}}{{x}−\mathrm{1}}} \:=\:\left({x}−\mathrm{3}\right)^{\left({x}−\mathrm{4}\right)} \\ $$

Question Number 110463    Answers: 0   Comments: 2

Find the gcd(n−1,n+1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{gcd}\left({n}−\mathrm{1},{n}+\mathrm{1}\right) \\ $$

Question Number 110436    Answers: 2   Comments: 0

If 2f(x) + f((1/x)) = 3x what is f(x)

$$\:\:\:\:\:\mathrm{If}\:\mathrm{2f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=\:\mathrm{3x} \\ $$$$\:\:\:\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$

Question Number 110434    Answers: 1   Comments: 1

The product of the four terms of an increasing arithmetic progression is a, their sum is b, and the sum of their reciprocal is c. Suppose that a,b,c form a geometric progression whose product is 8000, find the sum of the first and fourth term.

$$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{increasing}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{a}, \\ $$$$\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{b},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their} \\ $$$$\mathrm{reciprocal}\:\mathrm{is}\:\mathrm{c}.\:\mathrm{Suppose}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{form} \\ $$$$\mathrm{a}\:\mathrm{geometric}\:\mathrm{progression}\:\mathrm{whose} \\ $$$$\mathrm{product}\:\mathrm{is}\:\mathrm{8000},\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{and}\:\mathrm{fourth}\:\mathrm{term}. \\ $$

Question Number 110425    Answers: 2   Comments: 3

Which of the following is not a factor of x^6 −56x+55 A. x−1 B. x^2 −x+5 C. x^3 +2x^2 −2x−11 D. x^4 +x^3 +4x^2 −9x+11 E. x^5 +x^4 +x^3 +x^2 +x−55 Please show all workings clearly. Thanks.

$$ \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{factor} \\ $$$$\mathrm{of}\:\mathrm{x}^{\mathrm{6}} −\mathrm{56x}+\mathrm{55} \\ $$$$\mathrm{A}.\:\mathrm{x}−\mathrm{1}\:\mathrm{B}.\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{5}\:\mathrm{C}. \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{11}\:\mathrm{D}. \\ $$$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} −\mathrm{9x}+\mathrm{11}\:\mathrm{E}. \\ $$$$\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{55} \\ $$$$ \\ $$$$\mathrm{Please}\:\mathrm{show}\:\mathrm{all}\:\mathrm{workings}\:\mathrm{clearly}. \\ $$$$\mathrm{Thanks}. \\ $$

Question Number 110420    Answers: 1   Comments: 0

Prove that x^5 −3x^4 −17x^3 −x^2 −3x+17 cannot be factorized completely over the set of polynomials with integral coefficients.

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{5}} −\mathrm{3x}^{\mathrm{4}} −\mathrm{17x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{17}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{factorized}\:\mathrm{completely}\:\mathrm{over}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of} \\ $$$$\mathrm{polynomials}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$

Question Number 110419    Answers: 1   Comments: 2

Let t be a root of x^3 −3x+1=0, if ((t^2 +pt+1)/(t^2 −t+1)) can be written as t+c for some p,c ∈ Z, then p−c equals?

$$\mathrm{Let}\:\mathrm{t}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{1}=\mathrm{0},\:\mathrm{if}\: \\ $$$$\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{pt}+\mathrm{1}}{\mathrm{t}^{\mathrm{2}} −\mathrm{t}+\mathrm{1}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{t}+\mathrm{c}\:\mathrm{for} \\ $$$$\mathrm{some}\:\mathrm{p},\mathrm{c}\:\in\:\mathbb{Z},\:\mathrm{then}\:\mathrm{p}−\mathrm{c}\:\mathrm{equals}? \\ $$

Question Number 110399    Answers: 0   Comments: 5

The identity 2[16a^4 +81b^4 +c^4 ]=[4a^2 +9b^2 +c^2 ]^2 cannot result from which of the following equations? A. 6b=4a+2c B. 6a=9b+3c C. 6b=−4a+2c D.c= −2a−3b E. 6c=2b+3a

$$\mathrm{The}\:\mathrm{identity} \\ $$$$\mathrm{2}\left[\mathrm{16a}^{\mathrm{4}} +\mathrm{81b}^{\mathrm{4}} +\mathrm{c}^{\mathrm{4}} \right]=\left[\mathrm{4a}^{\mathrm{2}} +\mathrm{9b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right]^{\mathrm{2}} \\ $$$$\mathrm{cannot}\:\mathrm{result}\:\mathrm{from}\:\mathrm{which}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{equations}?\: \\ $$$$\mathrm{A}.\:\mathrm{6b}=\mathrm{4a}+\mathrm{2c}\:\mathrm{B}.\:\mathrm{6a}=\mathrm{9b}+\mathrm{3c}\:\mathrm{C}. \\ $$$$\mathrm{6b}=−\mathrm{4a}+\mathrm{2c}\:\mathrm{D}.\mathrm{c}=\:−\mathrm{2a}−\mathrm{3b}\:\mathrm{E}. \\ $$$$\mathrm{6c}=\mathrm{2b}+\mathrm{3a} \\ $$

Question Number 110374    Answers: 2   Comments: 0

If P(x) is a polynomial whose sum of coefficients is 3 and P(x) can be factorised into two polynomials Q(x),R(x) with integer coefficients, the sum of the coefficients Q(x)^2 +R(x)^2 is

$$\mathrm{If}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{whose}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{coefficients}\:\mathrm{is}\:\mathrm{3}\:\mathrm{and}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{factorised}\:\mathrm{into}\:\mathrm{two}\:\mathrm{polynomials} \\ $$$$\mathrm{Q}\left(\mathrm{x}\right),\mathrm{R}\left(\mathrm{x}\right)\:\mathrm{with}\:\mathrm{integer}\:\mathrm{coefficients}, \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coefficients} \\ $$$$\mathrm{Q}\left(\mathrm{x}\right)^{\mathrm{2}} +\mathrm{R}\left(\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{is} \\ $$

Question Number 110359    Answers: 1   Comments: 0

Let f(x)=∣x−2∣+∣x−4∣−∣2x−6∣, for 2≤x≤8. The sum of the largest and smallest values of f(x) is

$$\mathrm{Let} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mid\mathrm{x}−\mathrm{2}\mid+\mid\mathrm{x}−\mathrm{4}\mid−\mid\mathrm{2x}−\mathrm{6}\mid, \\ $$$$\mathrm{for}\:\mathrm{2}\leqslant\mathrm{x}\leqslant\mathrm{8}.\:\mathrm{The}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{largest}\:\mathrm{and} \\ $$$$\mathrm{smallest}\:\mathrm{values}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is} \\ $$

Question Number 110318    Answers: 1   Comments: 0

(a+b−c)^2 =??

$$\left({a}+{b}−{c}\right)^{\mathrm{2}} =?? \\ $$

Question Number 110299    Answers: 3   Comments: 0

Question Number 110294    Answers: 1   Comments: 0

∣2x+1∣−∣x−2∣ < 4 find the solution set

$$\mid\mathrm{2}{x}+\mathrm{1}\mid−\mid{x}−\mathrm{2}\mid\:<\:\mathrm{4}\: \\ $$$${find}\:{the}\:{solution}\:{set} \\ $$

Question Number 110269    Answers: 1   Comments: 4

Question Number 110268    Answers: 0   Comments: 3

Question Number 110265    Answers: 0   Comments: 0

Question Number 110246    Answers: 1   Comments: 0

solve for z∈C: (a+bi)^z =b+ai

$${solve}\:{for}\:{z}\in\mathbb{C}:\:\left({a}+{bi}\right)^{{z}} ={b}+{ai} \\ $$

Question Number 110219    Answers: 0   Comments: 3

let A and C be two none empety set prove that A⊆B ∧ C ⊆D iff A×C ⊆B×D? help me sir

$${let}\:{A}\:{and}\:{C}\:{be}\:{two}\:{none}\:{empety}\:{set}\:{prove}\:{that} \\ $$$${A}\subseteq{B}\:\wedge\:{C}\:\subseteq{D}\:{iff}\:{A}×{C}\:\subseteq{B}×{D}? \\ $$$${help}\:{me}\:{sir} \\ $$

Question Number 110182    Answers: 1   Comments: 2

Solve x^3 +15x−92=0

$$\mathrm{Solve}\:{x}^{\mathrm{3}} +\mathrm{15}{x}−\mathrm{92}=\mathrm{0} \\ $$

Question Number 110173    Answers: 2   Comments: 0

If Σ_(r=1) ^n t_r =((n(n+1)(n+2)(n+3))/8) then lim_(n→∞) Σ_(r=1) ^n (1/t_r ) = ?

$${If}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{t}_{{r}} =\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)}{\mathrm{8}} \\ $$$${then}\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{t}_{{r}} }\:=\:? \\ $$$$ \\ $$

Question Number 110157    Answers: 2   Comments: 0

If we have 5 people, how many ways can they be seated on a round table, if there are, (a) 7 chairs (b) 3 chairs available

$$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{5}\:\:\mathrm{people},\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{they}\:\mathrm{be}\:\mathrm{seated} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{round}\:\mathrm{table},\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}, \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{7}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\mathrm{3}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\:\:\:\:\mathrm{available} \\ $$

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com