Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 234
Question Number 122580 Answers: 0 Comments: 3
$${Solve} \\ $$$${x}^{{x}} =\mathrm{2}{x} \\ $$
Question Number 122551 Answers: 1 Comments: 0
Question Number 122523 Answers: 2 Comments: 0
Question Number 122445 Answers: 2 Comments: 0
Question Number 122360 Answers: 3 Comments: 0
Question Number 122214 Answers: 1 Comments: 0
Question Number 122166 Answers: 3 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{I}_{{n}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}\left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$\mathrm{obtain}\:\mathrm{a}\:\mathrm{reduction}\:\mathrm{formulae}\:\mathrm{for}\:{I}_{{n}\:} \:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:{I}_{{n}−\mathrm{2}} \:\mathrm{Hence}\:\mathrm{evaluate}\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}\left(\mathrm{1}−{x}\right)^{\mathrm{5}} {dx}. \\ $$
Question Number 122095 Answers: 0 Comments: 0
$${Find}\:{the}\:\:{number}\:{of}\:{triplets}\left({x}/{a}/{b}\right)\:{where}\:{x} \\ $$$${is}\:{a}\:{real}\:{number}\:{and}\:\left({a}/{b}\right)\:{belongs}\:{to}\:{the}\:{set} \\ $$$$\left\{\mathrm{1}/\mathrm{2}/\mathrm{3}/\mathrm{4}/\mathrm{5}/\mathrm{6}/\mathrm{7}/\mathrm{8}/\mathrm{9}\right\}\:{such}\:{that}\: \\ $$$$ \\ $$$${x}^{\mathrm{2}} −{a}\left\{{x}\right\}+{b}\:=\mathrm{0} \\ $$$${where}\:\left\{{x}\right\}\:{denotes}\:{the}\:{fractional}\:{part}\:{of}\:{real}\:{number}\:{x} \\ $$$$ \\ $$$$ \\ $$
Question Number 122081 Answers: 2 Comments: 0
$$\:{solve}\:\begin{cases}{\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid=\mathrm{1}}\\{\mid{x}−\mathrm{1}\mid−{y}=−\mathrm{5}}\end{cases} \\ $$
Question Number 122075 Answers: 1 Comments: 0
Question Number 122012 Answers: 0 Comments: 1
$${r}\mathrm{4}{width}\mathrm{10}{calculatesurfacearea} \\ $$
Question Number 122010 Answers: 1 Comments: 0
Question Number 122002 Answers: 2 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\frac{\mathrm{2xy}}{\mathrm{x}+\mathrm{y}}\:=\:\mathrm{1}}\\{\sqrt{\mathrm{x}+\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}}\end{cases}\:\mathrm{in}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{x},\mathrm{y}. \\ $$
Question Number 121996 Answers: 1 Comments: 0
$$\lfloor{x}\rfloor\:+\lfloor\mathrm{2}{x}\rfloor+\lfloor\mathrm{4}{x}\rfloor+\lfloor\mathrm{8}{x}\rfloor+\lfloor\mathrm{16}{x}\rfloor+\lfloor\mathrm{32}{x}\rfloor=\mathrm{123456} \\ $$$${find}\:{all}\:{values}\:{of}\:{x}\:{for}\:{which}\:{this}\:{relation}\:{holds}? \\ $$
Question Number 122174 Answers: 1 Comments: 0
$${If}\:\:\boldsymbol{{x}}\:=\:\sqrt{\mathrm{5}\:}\:+\:\sqrt{\mathrm{3}},{then}\:\boldsymbol{{x}}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:? \\ $$$$\boldsymbol{{or}},\:\boldsymbol{{is}}\:\boldsymbol{{it}}\:\boldsymbol{{possible}}\:\boldsymbol{{at}}\:\boldsymbol{{all}}? \\ $$
Question Number 121973 Answers: 1 Comments: 4
$$\:{solve}\:{this}\:{equation}\: \\ $$$$\:\begin{cases}{{xy}+{x}+{y}=\mathrm{19}}\\{{yz}\:+\:{y}+{z}\:=\:\mathrm{11}}\\{{z}+{x}+{zx}\:=\:\mathrm{14}}\end{cases} \\ $$
Question Number 121957 Answers: 0 Comments: 4
$${resoudre}\:{equation}\mid−\mathrm{2}{x}−\sqrt{\mathrm{3}/}\mathrm{4}\mid=\mathrm{5}−\mathrm{2}\sqrt{\mathrm{7}} \\ $$
Question Number 121950 Answers: 1 Comments: 0
$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{sum}\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\sqrt{\mathrm{k}^{\mathrm{2}} +\mathrm{1}}}}\:. \\ $$
Question Number 121948 Answers: 0 Comments: 0
Question Number 121919 Answers: 2 Comments: 0
$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{{k}={p}} {\overset{\infty} {\sum}}\:\mathrm{4}\centerdot\mathrm{3}^{\mathrm{2}−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$
Question Number 121918 Answers: 1 Comments: 6
$${a},\:{b}\:{and}\:{c}\:{are}\:{solutions}\:{of}\:{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{8}=\mathrm{0}. \\ $$$${Without}\:{determinating}\:{a},\:{b}\:{and}\:{c}\:;\: \\ $$$${calculate}\:{a}+{b}+{c}. \\ $$
Question Number 121913 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} +{y}=\mathrm{36}}\\{{x}+{y}^{\mathrm{2}} =\mathrm{25}\:\:{x}=?\:{y}=?}\end{cases} \\ $$
Question Number 121890 Answers: 2 Comments: 1
Question Number 121889 Answers: 2 Comments: 0
Question Number 121847 Answers: 0 Comments: 0
Question Number 121754 Answers: 2 Comments: 0
Pg 229 Pg 230 Pg 231 Pg 232 Pg 233 Pg 234 Pg 235 Pg 236 Pg 237 Pg 238
Terms of Service
Privacy Policy
Contact: info@tinkutara.com