Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 233
Question Number 125670 Answers: 1 Comments: 0
$${N}<\mathrm{10200}\:,\:{N}\:{has}\:{five}\:{digits}. \\ $$$${N}\equiv\mathrm{22}\left[\mathrm{23}\right]\:{and}\:{N}\equiv\mathrm{5}\left[\mathrm{17}\right]. \\ $$$${Determinate}\:{the}\:{integer}\:{N}. \\ $$
Question Number 125669 Answers: 1 Comments: 0
$${we}\:{are}\:{in}\:\mathbb{C}. \\ $$$${solve}\:{z}^{\mathrm{5}} =\mathrm{1}. \\ $$$${show}\:{that}\:{the}\:{sum}\:{of}\:{its}\:{solutions}\:{is} \\ $$$${null}\:{the}\:{deduct}\:{that}\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 125654 Answers: 1 Comments: 1
Question Number 125632 Answers: 1 Comments: 0
Question Number 125577 Answers: 1 Comments: 1
Question Number 125539 Answers: 2 Comments: 1
Question Number 125504 Answers: 1 Comments: 0
$${n}!=\mathrm{2}^{\mathrm{10}} \centerdot\mathrm{10}!\left(\mathrm{1}\centerdot\mathrm{3}\centerdot\mathrm{5}\centerdot\mathrm{7}\centerdot\centerdot\centerdot\mathrm{19}\right)\:\:\:\:\:\:\:\:{n}=??? \\ $$$${help}\:{me} \\ $$
Question Number 125465 Answers: 1 Comments: 0
Question Number 125464 Answers: 0 Comments: 1
Question Number 125442 Answers: 1 Comments: 0
$${find}\:\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } } \\ $$
Question Number 125428 Answers: 0 Comments: 1
Question Number 125288 Answers: 1 Comments: 2
Question Number 125262 Answers: 0 Comments: 1
$$\mathrm{Find}\:{GP}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{permutation}\:\mathrm{where} \\ $$$$\:{P}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{b}}&{{c}}&{{a}}&{{d}}\end{pmatrix}\:\mathrm{and}\:{G}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{a}}&{{c}}&{{d}}&{{b}}\end{pmatrix} \\ $$$$\mathrm{explain} \\ $$
Question Number 125258 Answers: 0 Comments: 1
$${a},{b},{c}\:\:=>\:\:\blacktriangle\:\boldsymbol{{tomonlari}} \\ $$$$\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{b}}\right)+\left(\boldsymbol{{p}}−\boldsymbol{{c}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)+\left(\boldsymbol{{p}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{c}}\right)\geqslant\sqrt{\mathrm{3}}\:\boldsymbol{{S}} \\ $$
Question Number 125226 Answers: 0 Comments: 5
Question Number 125202 Answers: 2 Comments: 0
$$\:{Solve}\:{the}\:{reccurence}\:{relation} \\ $$$${a}_{{n}} \:=\:\mathrm{2}\left({a}_{{n}−\mathrm{1}} −{a}_{{n}−\mathrm{2}} \right)\:;\:{given}\:{a}_{\mathrm{0}} =\mathrm{1}\: \\ $$$${and}\:{a}_{\mathrm{1}} =\:\mathrm{0}. \\ $$
Question Number 125186 Answers: 1 Comments: 0
Question Number 125169 Answers: 0 Comments: 3
$${algebra} \\ $$
Question Number 125136 Answers: 1 Comments: 3
$${Suppose}\:{a},{b},{c}\:{are}\:{nonzero}\:{real}\:{numbers} \\ $$$${satisfying}\:\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} ={abc}\left({a}+{b}+{c}\right)^{\mathrm{3}} . \\ $$$${Provd}\:{that}\:{a},{b},{c}\:{must}\:{be}\:{terms}\:{of}\:{a}\:{Geometric} \\ $$$${Progession} \\ $$$$ \\ $$
Question Number 125132 Answers: 0 Comments: 0
$${Find}\:{the}\:{number}\:{of}\:{real}\:{roots}\:{of}\:{ax}^{\mathrm{7}} −\mathrm{4}{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${where}\:{a}>\mathrm{2} \\ $$
Question Number 125131 Answers: 0 Comments: 0
$${Let}\:{a},{b},{c}\in\:{complex}\:{numbers}\:{such}\:{that}\:{the}\:{roots} \\ $$$${of}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{have}\:{same}\:{modulus} \\ $$$${Prove}\:{that}\:{a}=\mathrm{0}\:{iff}\:{b}=\mathrm{0} \\ $$
Question Number 125107 Answers: 0 Comments: 1
Question Number 124988 Answers: 1 Comments: 3
Question Number 124963 Answers: 2 Comments: 1
$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sin}\left(\varsigma\right)\mathrm{d}\varsigma}{\mathrm{cos}\left(\varsigma\right)+\mathrm{sin}\left(\varsigma\right)}\mathrm{d}\varsigma \\ $$$$\mathrm{where}\:\varsigma\::\:\mathrm{zeta}\: \\ $$
Question Number 124907 Answers: 0 Comments: 0
Question Number 125185 Answers: 1 Comments: 0
$$\:\begin{cases}{\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11}}\\{{x}\:+\:\sqrt{{y}}\:=\:\mathrm{7}\:}\end{cases} \\ $$
Pg 228 Pg 229 Pg 230 Pg 231 Pg 232 Pg 233 Pg 234 Pg 235 Pg 236 Pg 237
Terms of Service
Privacy Policy
Contact: info@tinkutara.com