| To solve x^3 =x+c
Let y=(x−p)(x^3 −x−c)
(dy/dx)=(x^3 −x−c)+(3x^2 −1)(x−p)
let (dy/dx)=mx
⇒ (3x^2 −1)(x−p)=mx
3x^3 −3px^2 −(m+1)x+p=0
3(x+c)−3px^2 −(m+1)x+p=0
3px^2 +(m−2)x−(3c+p)=0
and since x^3 =x+c
(m−2)x^2 +(2p−3c)x+3cp=0
[9cp^2 +(3c+p)(m−2)]x
+[3cp(m−2)+(3c+p)(2p−3c)]
=0
x=−(((3c+p)(2p−3c)+3cp(m−2))/(9cp^2 +(3c+p)(m−2)))
(m−2)x^2 +(2p−3c)x+(3cp)=0
Now choosing suitable ′p′ value
we find ′m′;
and then x=f(p,m) ★
|