Let f : R→R be a function satisfying the following :
(a) f(−x)=−f(x)
(b) f(x+1)=f(x)+1
(c) f((1/x))=((f(x))/x^2 ) for all x≠0
Show that
(i)f(x)=x for all x,y∈R
(ii) f(x+y)=f(x)+f(y) for all x,y∈R
(iii) f(xy)=f(x)f(y) for all x,y∈R
(iv) f((x/y))=((f(x))/(f(y))) for all x,y∈R with y≠0
|