Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 228

Question Number 128048    Answers: 3   Comments: 0

Σ_(n=0) ^∞ (((−1)^n )/(8n+3)) =?

$$\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{8n}+\mathrm{3}}\:=? \\ $$

Question Number 128007    Answers: 0   Comments: 2

Can anyone find any error in my attempt to improve upon the Cardano′s cubic formula.. or as an alternate to the trigonometric solution... here it goes: X^3 −pX−q=0 let (X/( (√p))) = x ; and with (q/(p(√p))) = c , x^3 −x−c=0 let x=(k+1)(p+q) =(p+kq) + (kp+q) p^3 +k^3 q^3 +3kpq(p+kq)+ k^3 p^3 +q^3 +3kpq(kp+q) −(p+kq)−(kp+q)=c ⇒ (1+k^3 )(p^3 +q^3 )+ (p+kq)(3kpq−1)+ (kp+q)(3kpq−1)= c let 3kpq=1 ⇒ p^3 +q^3 =(c/(1+k^3 )) & p^3 q^3 =(1/(27k^3 )) ; hence p^3 , q^3 = (c/(2(1+k^3 )))±(√((c^2 /(4(1+k^3 )^2 ))−(1/(27k^3 )))) lets choose upon a value of k such that D=0 ⇒ 4(1+k^3 )^2 =27c^2 k^3 .....(I) (just a quadratic..) first for c^2 >(8/(27)) we always can get two real k values, and even p=q then. x=(k+1)(p+q) = 2(k+1)p x=2(k+1)[(c/(2(1+k^3 )))]^(1/3) but simply pq=(1/(3k)) hence x=2(k+1)p = ((2(k+1))/( (√(3k)))) . ________________________ even for c=1 i dint get a correct answer, please help error-freeing it. (Thanks!)

$${Can}\:{anyone}\:{find}\:{any}\:{error}\:{in} \\ $$$${my}\:{attempt}\:{to}\:{improve}\:{upon} \\ $$$${the}\:{Cardano}'{s}\:{cubic}\:{formula}.. \\ $$$${or}\:{as}\:{an}\:{alternate}\:{to}\:{the} \\ $$$${trigonometric}\:{solution}... \\ $$$${here}\:{it}\:{goes}: \\ $$$$\:\:\:\:{X}^{\mathrm{3}} −{pX}−{q}=\mathrm{0} \\ $$$${let}\:\:\frac{{X}}{\:\sqrt{{p}}}\:=\:{x}\:;\:\:{and}\:{with}\:\frac{{q}}{{p}\sqrt{{p}}}\:=\:{c}\:, \\ $$$$\:\:\:\:{x}^{\mathrm{3}} −{x}−{c}=\mathrm{0} \\ $$$${let}\:\:\boldsymbol{{x}}=\left(\boldsymbol{{k}}+\mathrm{1}\right)\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\left(\boldsymbol{{p}}+\boldsymbol{{kq}}\right)\:+\:\left(\boldsymbol{{kp}}+\boldsymbol{{q}}\right) \\ $$$$\:\:\:\:{p}^{\mathrm{3}} +{k}^{\mathrm{3}} {q}^{\mathrm{3}} +\mathrm{3}{kpq}\left({p}+{kq}\right)+ \\ $$$$\:\:\:\:{k}^{\mathrm{3}} {p}^{\mathrm{3}} +{q}^{\mathrm{3}} +\mathrm{3}{kpq}\left({kp}+{q}\right) \\ $$$$\:\:\:\:\:−\left({p}+{kq}\right)−\left({kp}+{q}\right)={c} \\ $$$$\Rightarrow \\ $$$$\:\:\:\left(\mathrm{1}+{k}^{\mathrm{3}} \right)\left({p}^{\mathrm{3}} +{q}^{\mathrm{3}} \right)+ \\ $$$$\:\:\:\left({p}+{kq}\right)\left(\mathrm{3}{kpq}−\mathrm{1}\right)+ \\ $$$$\:\:\:\left({kp}+{q}\right)\left(\mathrm{3}{kpq}−\mathrm{1}\right)=\:{c} \\ $$$${let}\:\:\:\mathrm{3}\boldsymbol{{kpq}}=\mathrm{1}\:\:\:\Rightarrow \\ $$$$\:\:\:{p}^{\mathrm{3}} +{q}^{\mathrm{3}} =\frac{{c}}{\mathrm{1}+{k}^{\mathrm{3}} } \\ $$$$\&\:\:\:{p}^{\mathrm{3}} {q}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{27}{k}^{\mathrm{3}} }\:\:\:;\:\:{hence} \\ $$$$\:\:\:{p}^{\mathrm{3}} ,\:{q}^{\mathrm{3}} \:\:=\: \\ $$$$\:\:\frac{{c}}{\mathrm{2}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)}\pm\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{27}{k}^{\mathrm{3}} }} \\ $$$${lets}\:{choose}\:{upon}\:{a}\:{value}\:{of}\:\boldsymbol{{k}} \\ $$$${such}\:{that}\:{D}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{4}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)^{\mathrm{2}} =\mathrm{27}{c}^{\mathrm{2}} {k}^{\mathrm{3}} \:\:\:.....\left({I}\right) \\ $$$$\:\:\left({just}\:{a}\:{quadratic}..\right) \\ $$$${first}\:{for}\:\:\:{c}^{\mathrm{2}} >\frac{\mathrm{8}}{\mathrm{27}}\:\:{we}\:\:{always}\:{can} \\ $$$${get}\:{two}\:{real}\:{k}\:{values},\:{and}\:{even} \\ $$$${p}={q}\:{then}. \\ $$$$\:\:{x}=\left({k}+\mathrm{1}\right)\left({p}+{q}\right) \\ $$$$\:\:\:\:=\:\mathrm{2}\left({k}+\mathrm{1}\right){p}\: \\ $$$$\:{x}=\mathrm{2}\left({k}+\mathrm{1}\right)\left[\frac{{c}}{\mathrm{2}\left(\mathrm{1}+{k}^{\mathrm{3}} \right)}\right]^{\mathrm{1}/\mathrm{3}} \\ $$$${but}\:{simply}\:\:{pq}=\frac{\mathrm{1}}{\mathrm{3}{k}}\:\:\:{hence} \\ $$$$\:{x}=\mathrm{2}\left({k}+\mathrm{1}\right){p}\:=\:\frac{\mathrm{2}\left({k}+\mathrm{1}\right)}{\:\sqrt{\mathrm{3}{k}}}\:\:. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${even}\:{for}\:\:{c}=\mathrm{1}\:\:{i}\:{dint}\:{get}\:{a} \\ $$$${correct}\:{answer},\:\:{please}\:{help} \\ $$$${error}-{freeing}\:{it}.\:\left(\mathcal{T}{hanks}!\right) \\ $$

Question Number 127968    Answers: 1   Comments: 0

How many xεR satisfy (x)^(1/7) −(x)^(1/5) = (x)^(1/3) −(√x)

$$\:\mathrm{How}\:\mathrm{many}\:\mathrm{x}\epsilon\mathbb{R}\:\mathrm{satisfy}\:\sqrt[{\mathrm{7}}]{\mathrm{x}}\:−\sqrt[{\mathrm{5}}]{\mathrm{x}}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\sqrt{\mathrm{x}}\: \\ $$

Question Number 127924    Answers: 0   Comments: 3

x^3 =x+c Solve for x, even when c<(2/(3(√3))).

$$\:\:\:\:{x}^{\mathrm{3}} ={x}+{c} \\ $$$${Solve}\:{for}\:{x},\:{even}\:{when}\:{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}. \\ $$

Question Number 127908    Answers: 1   Comments: 0

(1/(1.3))+(2/(1.3.5))+(3/(1.3.5.7))+(4/(1.3.5.7.9))+...=?

$$\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{1}.\mathrm{3}.\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}+\frac{\mathrm{4}}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}.\mathrm{9}}+...=? \\ $$

Question Number 127887    Answers: 0   Comments: 0

Question Number 127880    Answers: 0   Comments: 0

Question Number 127788    Answers: 1   Comments: 0

Question Number 127785    Answers: 0   Comments: 0

Question Number 127743    Answers: 2   Comments: 1

dx+ydy=x^2 ydy

$${dx}+{ydy}={x}^{\mathrm{2}} {ydy} \\ $$

Question Number 127742    Answers: 1   Comments: 0

∫xdx

$$\int{xdx} \\ $$

Question Number 127716    Answers: 2   Comments: 0

Let p and q be two positive real number such that { ((p(√p) +q(√q) = 32)),((p(√q) + q(√p) = 31)) :} find the value of ((5(p+q)?)/7)

$$\:\mathrm{Let}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{be}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{such}\:\mathrm{that}\:\begin{cases}{\mathrm{p}\sqrt{\mathrm{p}}\:+\mathrm{q}\sqrt{\mathrm{q}}\:=\:\mathrm{32}}\\{\mathrm{p}\sqrt{\mathrm{q}}\:+\:\mathrm{q}\sqrt{\mathrm{p}}\:=\:\mathrm{31}}\end{cases} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{5}\left(\mathrm{p}+\mathrm{q}\right)?}{\mathrm{7}} \\ $$

Question Number 127706    Answers: 2   Comments: 0

dx+ydy=x^2 ydy

$${dx}+{ydy}={x}^{\mathrm{2}} {ydy} \\ $$

Question Number 127641    Answers: 1   Comments: 0

Question Number 127607    Answers: 1   Comments: 0

Question Number 127547    Answers: 1   Comments: 0

Question Number 127525    Answers: 1   Comments: 2

Question Number 127519    Answers: 1   Comments: 0

Question Number 127500    Answers: 1   Comments: 0

if sin x_1 +sin x_2 +...+sin x_(100) =0, find the maximum value of sin^5 x_1 +sin^5 x_2 +...+sin^5 x_(100) . (x_1 ,x_2 ,...,x_(100) ∈R)

$${if}\:\mathrm{sin}\:{x}_{\mathrm{1}} +\mathrm{sin}\:{x}_{\mathrm{2}} +...+\mathrm{sin}\:{x}_{\mathrm{100}} =\mathrm{0}, \\ $$$${find}\:{the}\:{maximum}\:{value}\:{of} \\ $$$$\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{1}} +\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{2}} +...+\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{100}} . \\ $$$$\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,...,{x}_{\mathrm{100}} \in\mathbb{R}\right) \\ $$

Question Number 127481    Answers: 2   Comments: 1

Question Number 127429    Answers: 0   Comments: 1

6÷3(2)=???

$$\mathrm{6}\boldsymbol{\div}\mathrm{3}\left(\mathrm{2}\right)=??? \\ $$

Question Number 127306    Answers: 0   Comments: 6

Question Number 127301    Answers: 0   Comments: 2

Question Number 127344    Answers: 2   Comments: 0

S = Σ_(n=4) ^∞ ℓn (1−(1/n^2 )) =?

$${S}\:=\:\underset{{n}=\mathrm{4}} {\overset{\infty} {\sum}}\ell{n}\:\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:=?\: \\ $$

Question Number 171745    Answers: 1   Comments: 0

Prove that in any triangle ABC , with area F holds: 7(m_a ^2 + m_b ^2 + m_c ^2 ) ≥ 36F + 3 Σ_(cyc) (a−m_a ^2 )

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\mathrm{triangle}\:\:\mathrm{ABC}\:, \\ $$$$\mathrm{with}\:\mathrm{area}\:\:\mathrm{F}\:\:\mathrm{holds}: \\ $$$$\mathrm{7}\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} ^{\mathrm{2}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} ^{\mathrm{2}} \right)\:\geqslant\:\mathrm{36F}\:+\:\mathrm{3}\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\left(\mathrm{a}−\mathrm{m}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} \right) \\ $$

Question Number 171743    Answers: 0   Comments: 2

solve: 12^(x−2) =4^x , find x

$${solve}:\:\mathrm{12}^{{x}−\mathrm{2}} =\mathrm{4}^{{x}} ,\:{find}\:{x} \\ $$

  Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com