Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 227
Question Number 119204 Answers: 0 Comments: 0
$$\mathrm{40}−\mathrm{misolning}\:\:\:\mathrm{yechimi}: \\ $$$$\mathrm{y}=\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{7} \\ $$$$\mathrm{Kritik}\:\mathrm{nuqtalarini}\:\mathrm{topish}\:\mathrm{uchun}:\: \\ $$$$\mathrm{1}.\:\mathrm{Funksiyadan}\:\mathrm{hosila}\:\mathrm{olamiz} \\ $$$$\mathrm{2}.\:\mathrm{Funksiya}\:\mathrm{hosilasini}\:\mathrm{nolga}\:\mathrm{tenglab},\: \\ $$$$\mathrm{tenglamani}\:\mathrm{yechamiz}. \\ $$$$\mathrm{y}'=\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{5}=\mathrm{0}\:\:\:\Rightarrow\:\:\:\mathrm{x}_{\mathrm{1}} =\mathrm{1};\:\:\mathrm{x}_{\mathrm{2}} =−\mathrm{5} \\ $$$$\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} =\mathrm{1}−\mathrm{5}=−\mathrm{4}\:\:\:\:\:\mathrm{Javob}:\:\:−\mathrm{4}\:\:\:\: \\ $$
Question Number 119160 Answers: 0 Comments: 5
Question Number 119159 Answers: 2 Comments: 0
$${We}\:{are}\:{in}\:\mathbb{C}. \\ $$$${Given}\:{Z}_{\mathrm{0}\:\:} =\mathrm{1}\:;\:\:\:\:\:{Z}_{{n}+\mathrm{1}\:} =\frac{\mathrm{1}}{\mathrm{2}}{Z}_{{n}\:} +\frac{\mathrm{1}}{\mathrm{2}}{i} \\ $$$${n}\:\in\:\mathbb{N}. \\ $$$${Show}\:{that}\:\forall\:{n}\:\in\:\mathbb{N}^{\ast\:} ,\:\mid{Z}_{{n}} \mid<\mathrm{1}. \\ $$
Question Number 119147 Answers: 0 Comments: 0
Question Number 119141 Answers: 1 Comments: 0
Question Number 119177 Answers: 1 Comments: 0
Question Number 119133 Answers: 0 Comments: 0
$$\mathrm{Informatica} \\ $$$$\left(\mathrm{11110000}\right)_{\mathrm{2}} =\mathrm{0}\bullet\mathrm{2}^{\mathrm{0}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{1}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{2}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{3}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{4}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{5}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{6}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{7}} = \\ $$$$=\mathrm{0}\bullet\mathrm{1}+\mathrm{0}\bullet\mathrm{2}+\mathrm{0}\bullet\mathrm{4}+\mathrm{0}\bullet\mathrm{8}+\mathrm{1}\bullet\mathrm{16}+\mathrm{1}\bullet\mathrm{32}+\mathrm{1}\bullet\mathrm{64}+\mathrm{1}\bullet\mathrm{128}= \\ $$$$\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{16}+\mathrm{32}+\mathrm{64}+\mathrm{128}=\left(\mathrm{240}\right)_{\mathrm{10}} \\ $$$$\left(\mathrm{11000101}\right)_{\mathrm{2}} =\mathrm{1}\bullet\mathrm{2}^{\mathrm{0}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{1}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{2}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{3}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{4}} +\mathrm{0}\bullet\mathrm{2}^{\mathrm{5}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{6}} +\mathrm{1}\bullet\mathrm{2}^{\mathrm{7}} = \\ $$$$=\:\mathrm{1}\bullet\mathrm{1}+\mathrm{0}\bullet\mathrm{2}+\mathrm{1}\bullet\mathrm{4}+\mathrm{0}\bullet\mathrm{8}+\mathrm{0}\bullet\mathrm{16}+\mathrm{0}\bullet\mathrm{32}+\mathrm{1}\bullet\mathrm{64}+\mathrm{1}\bullet\mathrm{128}=\:\left(\mathrm{197}\right)_{\mathrm{10}} \\ $$$$\left(\mathrm{01101001}\right)_{\mathrm{2}} = \\ $$
Question Number 119119 Answers: 2 Comments: 0
Question Number 119107 Answers: 1 Comments: 0
Question Number 119059 Answers: 1 Comments: 0
Question Number 119055 Answers: 2 Comments: 0
$$ \\ $$$${Show}\:{by}\:{recurence}\:{that}:\:\forall\:{n}\in\mathbb{N}^{\ast} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)}=\frac{{n}\left({n}+\mathrm{3}\right)}{\mathrm{4}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)} \\ $$
Question Number 119052 Answers: 3 Comments: 0
Question Number 118967 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \right)^{\frac{\mathrm{2}\centerdot\mathrm{4}}{\mathrm{1}\centerdot\mathrm{3}}\centerdot\frac{\mathrm{4}\centerdot\mathrm{6}}{\mathrm{3}\centerdot\mathrm{5}}\centerdot\centerdot\centerdot} =? \\ $$$$\frac{\mathrm{2}}{\mathrm{1}}\centerdot\frac{\mathrm{2}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{5}}\centerdot\frac{\mathrm{6}}{\mathrm{5}}\centerdot\frac{\mathrm{6}}{\mathrm{7}}\centerdot\centerdot\centerdot=\frac{\pi}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \right)^{\frac{\mathrm{2}}{\mathrm{1}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{6}}{\mathrm{5}}\centerdot\centerdot\centerdot} =\left(\frac{\mathrm{1}}{{e}}\right)^{\frac{\pi}{\mathrm{2}}} =\sqrt{\left(\frac{\mathrm{1}}{{e}}\right)^{\pi} }=\frac{\mathrm{1}}{\:\sqrt{{e}^{\pi} }} \\ $$
Question Number 118937 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{general}\:\mathrm{rule}\: \\ $$$$\mathrm{for}\:\mathrm{factorising}\:\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{n}} ? \\ $$
Question Number 118930 Answers: 1 Comments: 0
$$\mathrm{Let}\:\left[{x}\right]\:\mathrm{denote}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\leqslant{x}.\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{ordered}\:\mathrm{pair}\:\left({x},\mathrm{y}\right),\:\mathrm{where}\:{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are} \\ $$$$\mathrm{positive}\:\mathrm{integers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{30}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left[\frac{{x}}{\mathrm{2}}\right]+\left[\frac{\mathrm{2}{x}}{\mathrm{3}}\right]+\left[\frac{\mathrm{y}}{\mathrm{4}}\right]+\left[\frac{\mathrm{4y}}{\mathrm{5}}\right]=\frac{\mathrm{7}{x}}{\mathrm{6}}+\frac{\mathrm{21y}}{\mathrm{20}} \\ $$$$\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4} \\ $$
Question Number 118936 Answers: 3 Comments: 0
$${show}\:{by}\:{recurrence}\:{that}: \\ $$$${for}\:{n}\:\in\:\mathbb{N}^{\ast} ,\:\mathrm{2}^{\mathrm{6}{n}−\mathrm{5}} +\mathrm{3}^{\mathrm{2}{n}\:} \:{is}\:{divisible}\:{by} \\ $$$$\mathrm{11}. \\ $$
Question Number 118907 Answers: 0 Comments: 0
$${where}\:{can}\:{u}\:{fond}\:{a}\:{formula}\:{for} \\ $$$${denesting}\:{ramanujan}\:{type}\:{roots}? \\ $$
Question Number 118896 Answers: 1 Comments: 0
Question Number 118849 Answers: 1 Comments: 2
Question Number 118790 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{by}\:\mathrm{recurence}\:\mathrm{that} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}\:} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} ×\mathrm{a}^{\mathrm{k}} ×\mathrm{b}^{\mathrm{n}−\mathrm{k}} \\ $$
Question Number 118780 Answers: 2 Comments: 0
$$\mathrm{z}\:\mathrm{and}\:\mathrm{z}'\:\in\:\mathbb{C}\:. \\ $$$$\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{1}.\:\:\:\:\:\:\overline {\mathrm{zz}'}=\overset{−} {\mathrm{z}}×\overline {\mathrm{z}'} \\ $$$$\mathrm{2}.\:\:\:\:\:\:\:\overline {\left(\frac{\mathrm{z}}{\mathrm{z}'}\right)}=\frac{\overset{−} {\mathrm{z}}}{\overline {\mathrm{z}'}} \\ $$$$ \\ $$
Question Number 118777 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}{n}\pi}\:{n}^{{n}} }{{n}^{{n}} ×{e}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{e}}\left(\sqrt{\mathrm{2}{n}\pi}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{e}} \\ $$
Question Number 118740 Answers: 1 Comments: 1
$${f}\left({x}+\mathrm{2}\right)+{f}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{14} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 118712 Answers: 4 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequalities}: \\ $$$$\left.\mathrm{1}\right)\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}} >\mathrm{n}!\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} ,\mathrm{n}>\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\mid\mathrm{sinnx}\mid\leqslant\mathrm{n}\mid\mathrm{sinx}\mid\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} \\ $$
Question Number 118651 Answers: 1 Comments: 2
Question Number 118636 Answers: 1 Comments: 2
Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227 Pg 228 Pg 229 Pg 230 Pg 231
Terms of Service
Privacy Policy
Contact: info@tinkutara.com