Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 227

Question Number 129235    Answers: 2   Comments: 2

a= (7)^(1/3) + (9)^(1/3) b=4 Taqqoslang

$$\:\:\boldsymbol{{a}}=\:\sqrt[{\mathrm{3}}]{\mathrm{7}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\: \\ $$$$\:\:\:\boldsymbol{{b}}=\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Taqqoslang}} \\ $$

Question Number 129148    Answers: 0   Comments: 1

[ ((4^x +44))^(1/5) + (1/( ((2^(x−1) +7))^(1/3) )) ]^8 = 336 x =?

$$\:\left[\:\sqrt[{\mathrm{5}}]{\mathrm{4}^{\mathrm{x}} +\mathrm{44}}\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}^{\mathrm{x}−\mathrm{1}} +\mathrm{7}}}\:\right]^{\mathrm{8}} =\:\mathrm{336} \\ $$$$\:\mathrm{x}\:=? \\ $$

Question Number 128942    Answers: 2   Comments: 0

Given : 3xf((1/x))+f(x)=2x+2 and f(3), f(9) , f(a) three first term in AP respectively. Find the value of a ?

$$\:\mathrm{Given}\::\:\mathrm{3}{xf}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{2}\: \\ $$$${and}\:{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right)\:,\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{three}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{respectively}.\:\mathrm{Find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:?\: \\ $$

Question Number 128932    Answers: 1   Comments: 3

Question Number 128918    Answers: 0   Comments: 2

Question Number 128903    Answers: 2   Comments: 0

solve the differential equation (dy^2 /dx^(2 ) )+y=0

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}^{\mathrm{2}} }{{dx}^{\mathrm{2}\:} }+{y}=\mathrm{0} \\ $$

Question Number 128850    Answers: 1   Comments: 0

(√(x+(√(4x+(√(16x+(√(64x+...+(√(4^(2019) x+3))))))))))−(√x)=1 x=?

$$\sqrt{{x}+\sqrt{\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+\sqrt{\mathrm{64}{x}+...+\sqrt{\mathrm{4}^{\mathrm{2019}} {x}+\mathrm{3}}}}}}−\sqrt{{x}}=\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 128715    Answers: 0   Comments: 1

fine the number thats divided by 3,4,5 and 9 and produce the remanider with order 1,3,5 and 7??

$${fine}\:{the}\:{number}\:{thats}\:{divided}\:{by}\: \\ $$$$\mathrm{3},\mathrm{4},\mathrm{5}\:{and}\:\mathrm{9}\:{and}\:{produce}\:{the}\:{remanider} \\ $$$${with}\:{order}\:\mathrm{1},\mathrm{3},\mathrm{5}\:{and}\:\mathrm{7}?? \\ $$

Question Number 128712    Answers: 2   Comments: 1

if P(x−1)=2x^3 ∙Q(x)+x^2 find ((P(1)−4)/(Q(x)))=??

$${if}\:{P}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} \centerdot{Q}\left({x}\right)+{x}^{\mathrm{2}} \\ $$$${find}\:\frac{{P}\left(\mathrm{1}\right)−\mathrm{4}}{{Q}\left({x}\right)}=?? \\ $$

Question Number 128698    Answers: 1   Comments: 3

Question Number 128684    Answers: 1   Comments: 0

how we can convert 0.9^− to (q/p)?

$${how}\:{we}\:{can}\:{convert}\:\mathrm{0}.\overset{−} {\mathrm{9}}\:{to}\:\frac{{q}}{{p}}? \\ $$

Question Number 128636    Answers: 1   Comments: 0

Solve diopthantine equation (1/a)+(1/b) = (2/(17)).

$$\mathrm{Solve}\:\mathrm{diopthantine}\:\mathrm{equation}\: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\:=\:\frac{\mathrm{2}}{\mathrm{17}}. \\ $$

Question Number 128632    Answers: 0   Comments: 0

Question Number 128617    Answers: 1   Comments: 1

Question Number 128589    Answers: 1   Comments: 0

...nice calculus... a∈R^+ & }⇒ (√(a−(√a) )) =? a^2 −17a=16(√a)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{a}\in\mathbb{R}^{+} \:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\&\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\right\}\Rightarrow\:\sqrt{{a}−\sqrt{{a}}\:}\:=? \\ $$$$\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{17}{a}=\mathrm{16}\sqrt{{a}}\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 128509    Answers: 1   Comments: 0

Question Number 128508    Answers: 1   Comments: 0

if x^x^3 =3 find x

$${if}\:\:{x}^{{x}^{\mathrm{3}} } =\mathrm{3} \\ $$$${find}\:{x} \\ $$

Question Number 128457    Answers: 0   Comments: 1

Question Number 128459    Answers: 1   Comments: 0

For any complex number z,z^n =z^ has (n+2) solutions How???

$${For}\:{any}\:{complex}\:{number}\:{z},{z}^{{n}} =\bar {{z}}\:{has}\:\left({n}+\mathrm{2}\right)\:{solutions}\:{How}??? \\ $$

Question Number 128388    Answers: 0   Comments: 1

y=−sin((Π/2)+2x)+2cos(5x+Π) y_(min) = ??

$${y}=−{sin}\left(\frac{\Pi}{\mathrm{2}}+\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{5}{x}+\Pi\right) \\ $$$${y}_{{min}} =\:?? \\ $$

Question Number 128458    Answers: 0   Comments: 1

Question Number 128371    Answers: 1   Comments: 1

Question Number 128369    Answers: 2   Comments: 0

If u_1 + u_2 + u_3 + ... + u_n = 2n^2 + n is an AP. Find u_1 + u_2 + u_3 + ... + u_(2n − 2) + u_(2n − 1)

$$\mathrm{If}\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{n}} \:\:\:=\:\:\:\mathrm{2n}^{\mathrm{2}} \:\:+\:\:\mathrm{n}\:\:\:\mathrm{is}\:\mathrm{an}\:\mathrm{AP}. \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{1}} \\ $$

Question Number 128368    Answers: 2   Comments: 0

If a_1 = 2, a_2 = 3, a_(n + 2) = a_(n + 1) + (a/2), find a_n

$$\mathrm{If}\:\:\:\:\mathrm{a}_{\mathrm{1}} \:=\:\:\mathrm{2},\:\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{3},\:\:\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:=\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} \:\:+\:\:\frac{\mathrm{a}}{\mathrm{2}},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 128341    Answers: 1   Comments: 5

Which is larger Z = (1/(2+(3/(6−(4/(11)))))) or S = (1/(2+(3/(6−(5/(11)))))) ?

$$\mathrm{Which}\:\mathrm{is}\:\mathrm{larger}\:\mathrm{Z}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{4}}{\mathrm{11}}}}\:\mathrm{or}\:\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{5}}{\mathrm{11}}}}\:? \\ $$

Question Number 128329    Answers: 2   Comments: 0

(2)Solution set : x ∣2x−6 ∣ < 3x is _ (2) If lim_(x→2) ((2−(√(a+bx^3 )))/(x−2)) = H , then lim_(x→2) ((x^2 −4)/( (√(a+bx^3 ))−1)) = _

$$\left(\mathrm{2}\right)\mathrm{Solution}\:\mathrm{set}\::\:{x}\:\mid\mathrm{2}{x}−\mathrm{6}\:\mid\:<\:\mathrm{3}{x}\: \\ $$$$\mathrm{is}\:\_ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt{{a}+{bx}^{\mathrm{3}} }}{{x}−\mathrm{2}}\:=\:{H}\:,\:{then} \\ $$$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{{a}+{bx}^{\mathrm{3}} }−\mathrm{1}}\:=\:\_ \\ $$

  Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com