Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 227
Question Number 129235 Answers: 2 Comments: 2
$$\:\:\boldsymbol{{a}}=\:\sqrt[{\mathrm{3}}]{\mathrm{7}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\: \\ $$$$\:\:\:\boldsymbol{{b}}=\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Taqqoslang}} \\ $$
Question Number 129148 Answers: 0 Comments: 1
$$\:\left[\:\sqrt[{\mathrm{5}}]{\mathrm{4}^{\mathrm{x}} +\mathrm{44}}\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}^{\mathrm{x}−\mathrm{1}} +\mathrm{7}}}\:\right]^{\mathrm{8}} =\:\mathrm{336} \\ $$$$\:\mathrm{x}\:=? \\ $$
Question Number 128942 Answers: 2 Comments: 0
$$\:\mathrm{Given}\::\:\mathrm{3}{xf}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{2}\: \\ $$$${and}\:{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right)\:,\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{three}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{respectively}.\:\mathrm{Find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:?\: \\ $$
Question Number 128932 Answers: 1 Comments: 3
Question Number 128918 Answers: 0 Comments: 2
Question Number 128903 Answers: 2 Comments: 0
$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}^{\mathrm{2}} }{{dx}^{\mathrm{2}\:} }+{y}=\mathrm{0} \\ $$
Question Number 128850 Answers: 1 Comments: 0
$$\sqrt{{x}+\sqrt{\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+\sqrt{\mathrm{64}{x}+...+\sqrt{\mathrm{4}^{\mathrm{2019}} {x}+\mathrm{3}}}}}}−\sqrt{{x}}=\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 128715 Answers: 0 Comments: 1
$${fine}\:{the}\:{number}\:{thats}\:{divided}\:{by}\: \\ $$$$\mathrm{3},\mathrm{4},\mathrm{5}\:{and}\:\mathrm{9}\:{and}\:{produce}\:{the}\:{remanider} \\ $$$${with}\:{order}\:\mathrm{1},\mathrm{3},\mathrm{5}\:{and}\:\mathrm{7}?? \\ $$
Question Number 128712 Answers: 2 Comments: 1
$${if}\:{P}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} \centerdot{Q}\left({x}\right)+{x}^{\mathrm{2}} \\ $$$${find}\:\frac{{P}\left(\mathrm{1}\right)−\mathrm{4}}{{Q}\left({x}\right)}=?? \\ $$
Question Number 128698 Answers: 1 Comments: 3
Question Number 128684 Answers: 1 Comments: 0
$${how}\:{we}\:{can}\:{convert}\:\mathrm{0}.\overset{−} {\mathrm{9}}\:{to}\:\frac{{q}}{{p}}? \\ $$
Question Number 128636 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{diopthantine}\:\mathrm{equation}\: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\:=\:\frac{\mathrm{2}}{\mathrm{17}}. \\ $$
Question Number 128632 Answers: 0 Comments: 0
Question Number 128617 Answers: 1 Comments: 1
Question Number 128589 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{a}\in\mathbb{R}^{+} \:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\&\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\right\}\Rightarrow\:\sqrt{{a}−\sqrt{{a}}\:}\:=? \\ $$$$\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{17}{a}=\mathrm{16}\sqrt{{a}}\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 128509 Answers: 1 Comments: 0
Question Number 128508 Answers: 1 Comments: 0
$${if}\:\:{x}^{{x}^{\mathrm{3}} } =\mathrm{3} \\ $$$${find}\:{x} \\ $$
Question Number 128457 Answers: 0 Comments: 1
Question Number 128459 Answers: 1 Comments: 0
$${For}\:{any}\:{complex}\:{number}\:{z},{z}^{{n}} =\bar {{z}}\:{has}\:\left({n}+\mathrm{2}\right)\:{solutions}\:{How}??? \\ $$
Question Number 128388 Answers: 0 Comments: 1
$${y}=−{sin}\left(\frac{\Pi}{\mathrm{2}}+\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{5}{x}+\Pi\right) \\ $$$${y}_{{min}} =\:?? \\ $$
Question Number 128458 Answers: 0 Comments: 1
Question Number 128371 Answers: 1 Comments: 1
Question Number 128369 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{n}} \:\:\:=\:\:\:\mathrm{2n}^{\mathrm{2}} \:\:+\:\:\mathrm{n}\:\:\:\mathrm{is}\:\mathrm{an}\:\mathrm{AP}. \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{1}} \\ $$
Question Number 128368 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\:\mathrm{a}_{\mathrm{1}} \:=\:\:\mathrm{2},\:\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{3},\:\:\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:=\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} \:\:+\:\:\frac{\mathrm{a}}{\mathrm{2}},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$
Question Number 128341 Answers: 1 Comments: 5
$$\mathrm{Which}\:\mathrm{is}\:\mathrm{larger}\:\mathrm{Z}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{4}}{\mathrm{11}}}}\:\mathrm{or}\:\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{5}}{\mathrm{11}}}}\:? \\ $$
Question Number 128329 Answers: 2 Comments: 0
$$\left(\mathrm{2}\right)\mathrm{Solution}\:\mathrm{set}\::\:{x}\:\mid\mathrm{2}{x}−\mathrm{6}\:\mid\:<\:\mathrm{3}{x}\: \\ $$$$\mathrm{is}\:\_ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt{{a}+{bx}^{\mathrm{3}} }}{{x}−\mathrm{2}}\:=\:{H}\:,\:{then} \\ $$$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{{a}+{bx}^{\mathrm{3}} }−\mathrm{1}}\:=\:\_ \\ $$
Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227 Pg 228 Pg 229 Pg 230 Pg 231
Terms of Service
Privacy Policy
Contact: info@tinkutara.com