Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 226
Question Number 129607 Answers: 2 Comments: 0
$${salom} \\ $$
Question Number 129595 Answers: 2 Comments: 0
$$\mathrm{y}=\sqrt{\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{x}+.............\infty}}} \\ $$$$ \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=? \\ $$
Question Number 129489 Answers: 2 Comments: 0
$${if}\:{p}\left({x}+\mathrm{2}\right)−\mathrm{2}{p}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3} \\ $$$${find}\:{p}\left({x}\right) \\ $$
Question Number 129394 Answers: 3 Comments: 0
$$\begin{cases}{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{17}=\mathrm{0}}\\{\mathrm{y}^{\mathrm{3}} −\mathrm{3y}^{\mathrm{2}} +\mathrm{5y}+\mathrm{11}=\mathrm{0}}\end{cases} \\ $$$$\:\mathrm{find}\:\mathrm{x}+\mathrm{y}\:. \\ $$
Question Number 129364 Answers: 1 Comments: 0
Question Number 129343 Answers: 0 Comments: 1
$${f}\left({x}+\mathrm{1}\right)={f}\left({x}−\mathrm{1}\right)={x}^{\mathrm{2}} \:\:\:\:\:\:\:\:{f}^{−\mathrm{1}} \left({x}\right)=?? \\ $$
Question Number 129320 Answers: 1 Comments: 1
Question Number 129310 Answers: 0 Comments: 1
Question Number 129300 Answers: 2 Comments: 0
$$ \\ $$Find the polynomial divided by (x-2) the remaining 5 divided by (x-3) the remaining 9 and if divided by (x-4) the remaining 13 if divided by (x-10) 37 and if divided by (x-3/4) the remainder remains zero
Question Number 129279 Answers: 0 Comments: 3
$${f}\left({x}\right)=\frac{\mathrm{7}{x}−\mathrm{3}}{\left(\mathrm{2}{x}−\mathrm{11}\right)^{{ln}\frac{\mathrm{1}}{\mathrm{7}}} }\:\:\:\:\:{in}\:{which}\:{value} \\ $$$${of}\:{x}\:{is}\:{continuty}\:?? \\ $$
Question Number 129255 Answers: 0 Comments: 1
$$\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} =? \\ $$
Question Number 129235 Answers: 2 Comments: 2
$$\:\:\boldsymbol{{a}}=\:\sqrt[{\mathrm{3}}]{\mathrm{7}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\: \\ $$$$\:\:\:\boldsymbol{{b}}=\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Taqqoslang}} \\ $$
Question Number 129148 Answers: 0 Comments: 1
$$\:\left[\:\sqrt[{\mathrm{5}}]{\mathrm{4}^{\mathrm{x}} +\mathrm{44}}\:+\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}^{\mathrm{x}−\mathrm{1}} +\mathrm{7}}}\:\right]^{\mathrm{8}} =\:\mathrm{336} \\ $$$$\:\mathrm{x}\:=? \\ $$
Question Number 128942 Answers: 2 Comments: 0
$$\:\mathrm{Given}\::\:\mathrm{3}{xf}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{2}\: \\ $$$${and}\:{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right)\:,\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{three}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{respectively}.\:\mathrm{Find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:?\: \\ $$
Question Number 128932 Answers: 1 Comments: 3
Question Number 128918 Answers: 0 Comments: 2
Question Number 128903 Answers: 2 Comments: 0
$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}^{\mathrm{2}} }{{dx}^{\mathrm{2}\:} }+{y}=\mathrm{0} \\ $$
Question Number 128850 Answers: 1 Comments: 0
$$\sqrt{{x}+\sqrt{\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+\sqrt{\mathrm{64}{x}+...+\sqrt{\mathrm{4}^{\mathrm{2019}} {x}+\mathrm{3}}}}}}−\sqrt{{x}}=\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 128715 Answers: 0 Comments: 1
$${fine}\:{the}\:{number}\:{thats}\:{divided}\:{by}\: \\ $$$$\mathrm{3},\mathrm{4},\mathrm{5}\:{and}\:\mathrm{9}\:{and}\:{produce}\:{the}\:{remanider} \\ $$$${with}\:{order}\:\mathrm{1},\mathrm{3},\mathrm{5}\:{and}\:\mathrm{7}?? \\ $$
Question Number 128712 Answers: 2 Comments: 1
$${if}\:{P}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} \centerdot{Q}\left({x}\right)+{x}^{\mathrm{2}} \\ $$$${find}\:\frac{{P}\left(\mathrm{1}\right)−\mathrm{4}}{{Q}\left({x}\right)}=?? \\ $$
Question Number 128698 Answers: 1 Comments: 3
Question Number 128684 Answers: 1 Comments: 0
$${how}\:{we}\:{can}\:{convert}\:\mathrm{0}.\overset{−} {\mathrm{9}}\:{to}\:\frac{{q}}{{p}}? \\ $$
Question Number 128636 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{diopthantine}\:\mathrm{equation}\: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\:=\:\frac{\mathrm{2}}{\mathrm{17}}. \\ $$
Question Number 128632 Answers: 0 Comments: 0
Question Number 128617 Answers: 1 Comments: 1
Question Number 128589 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{a}\in\mathbb{R}^{+} \:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\&\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\right\}\Rightarrow\:\sqrt{{a}−\sqrt{{a}}\:}\:=? \\ $$$$\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{17}{a}=\mathrm{16}\sqrt{{a}}\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227 Pg 228 Pg 229 Pg 230
Terms of Service
Privacy Policy
Contact: info@tinkutara.com