Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 226

Question Number 131688    Answers: 2   Comments: 0

Let α and β are the roots of the equation x^2 −6x−2=0. If a_n = α^n −β^n for n ≥1 then the value of ((a_(10) −2a_8 )/(2a_9 )) ?

$$\:\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{2}=\mathrm{0}. \\ $$$$\mathrm{If}\:{a}_{{n}} \:=\:\alpha^{{n}} −\beta^{{n}} \:\mathrm{for}\:{n}\:\geqslant\mathrm{1}\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{a}_{\mathrm{10}} −\mathrm{2}{a}_{\mathrm{8}} }{\mathrm{2}{a}_{\mathrm{9}} }\:? \\ $$

Question Number 131640    Answers: 1   Comments: 0

Question Number 131605    Answers: 2   Comments: 0

solve the equation m^4 −7m^3 + 14m^2 −7m + 1 = 0

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:{m}^{\mathrm{4}} −\mathrm{7}{m}^{\mathrm{3}} +\:\mathrm{14}{m}^{\mathrm{2}} −\mathrm{7}{m}\:+\:\mathrm{1}\:=\:\mathrm{0}\: \\ $$

Question Number 131480    Answers: 0   Comments: 0

what are the condition for absolute inequality?

$${what}\:{are}\:{the}\:{condition}\:{for}\:{absolute}\: \\ $$$${inequality}? \\ $$

Question Number 131440    Answers: 0   Comments: 2

∣2x+7∣<−2 solve=?

$$\mid\mathrm{2}{x}+\mathrm{7}\mid<−\mathrm{2}\:\:\:\:\:\:{solve}=? \\ $$

Question Number 131430    Answers: 2   Comments: 2

(((((x^x )^x ))^(1/(1/x)) ))^(1/(1/x)) =4 find x=?

$$\sqrt[{\frac{\mathrm{1}}{{x}}}]{\left(\sqrt[{\frac{\mathrm{1}}{{x}}}]{\left.{x}\:^{{x}} \right)^{{x}} }\right.}=\mathrm{4}\:\:\:\:\:\:\:{find}\:\:{x}=? \\ $$

Question Number 131421    Answers: 0   Comments: 1

Solve using trig method 8x^3 −4x^2 −4x+1=0

$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{trig}\:\mathrm{method} \\ $$$$\:\:\mathrm{8x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}=\mathrm{0} \\ $$

Question Number 131390    Answers: 0   Comments: 0

Question Number 131374    Answers: 3   Comments: 0

Question Number 131363    Answers: 0   Comments: 2

Question Number 131343    Answers: 1   Comments: 0

A mapping is defined as G→S where (G,×) and (S,+), show that the mapping f(x) = ln x is an isomophism.

$$\mathrm{A}\:\mathrm{mapping}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:{G}\rightarrow{S}\:\mathrm{where}\:\left({G},×\right)\:\mathrm{and}\:\left({S},+\right), \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{mapping}\:{f}\left({x}\right)\:=\:\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{isomophism}. \\ $$

Question Number 131309    Answers: 2   Comments: 0

Question Number 131218    Answers: 2   Comments: 0

Question Number 131214    Answers: 1   Comments: 0

Question Number 131201    Answers: 2   Comments: 0

Question Number 131158    Answers: 1   Comments: 0

If 4a_n +2a_(−n) =3n^2 +2n−3 find a_n =?

$${If}\:\mathrm{4}{a}_{{n}} +\mathrm{2}{a}_{−{n}} =\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{3} \\ $$$${find}\:{a}_{{n}} \:=? \\ $$

Question Number 131155    Answers: 2   Comments: 0

Given { ((a_(n+2) =a_(n+1) +(1/2)a_n )),((a_1 =3 ; a_2 =2)) :} find a_n .

$${Given}\:\begin{cases}{{a}_{{n}+\mathrm{2}} ={a}_{{n}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}{a}_{{n}} }\\{{a}_{\mathrm{1}} =\mathrm{3}\:;\:{a}_{\mathrm{2}} =\mathrm{2}}\end{cases} \\ $$$$\:{find}\:{a}_{{n}} . \\ $$

Question Number 206939    Answers: 1   Comments: 7

In how many ways can the word KINECTIC be arranged so that no vowels can be together?

In how many ways can the word KINECTIC be arranged so that no vowels can be together?

Question Number 131084    Answers: 2   Comments: 0

let solve this in R : x^4 −x^3 −4x^2 +x+1=0.

$$\mathrm{let}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{in}\:\mathbb{R}\::\: \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}. \\ $$

Question Number 131075    Answers: 1   Comments: 0

If a−3=−b−4=−c−5=d+6=e+7= a−b−c+d+e+8 then a−b−c+d+e =?

$$\mathrm{If}\:\mathrm{a}−\mathrm{3}=−\mathrm{b}−\mathrm{4}=−\mathrm{c}−\mathrm{5}=\mathrm{d}+\mathrm{6}=\mathrm{e}+\mathrm{7}= \\ $$$$\mathrm{a}−\mathrm{b}−\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{8}\:\mathrm{then}\:\mathrm{a}−\mathrm{b}−\mathrm{c}+\mathrm{d}+\mathrm{e}\:=? \\ $$

Question Number 131064    Answers: 3   Comments: 0

Question Number 131016    Answers: 0   Comments: 0

Question Number 130853    Answers: 1   Comments: 0

Question Number 130846    Answers: 1   Comments: 1

prove that 3sec^(−1) ((√2))−4csc^(−1) ((√2))+5cot^(−1) (2)=1.533

$${prove}\:{that} \\ $$$$\mathrm{3}{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)−\mathrm{4}{csc}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)+\mathrm{5}{cot}^{−\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{1}.\mathrm{533} \\ $$

Question Number 130806    Answers: 1   Comments: 0

Question Number 130802    Answers: 2   Comments: 0

  Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com