Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 226
Question Number 125900 Answers: 0 Comments: 1
Question Number 125890 Answers: 0 Comments: 1
$$\left(\mathbb{Z}^{+,\ast} \right)\:{where}\:{x}^{\ast} {y}=\:{x}−{y}\:{for}\:{all}\:{x},{y}\:\in\:{z}^{+} . \\ $$
Question Number 125873 Answers: 1 Comments: 0
Question Number 125868 Answers: 1 Comments: 0
Question Number 125864 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{4}} }+\frac{\mathrm{2}}{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{4}} }+\frac{\mathrm{3}}{\mathrm{1}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{4}} }+...+\frac{\mathrm{50}}{\mathrm{1}+\mathrm{50}^{\mathrm{2}} +\mathrm{50}^{\mathrm{4}} }=? \\ $$
Question Number 125785 Answers: 1 Comments: 0
$$\oplus+\oplus+\oplus=\mathrm{33} \\ $$$$\blacktriangle+\blacktriangle+\mathrm{9}\blacktrinagledown=\mathrm{25} \\ $$$$\mathrm{9}\blacktrinagledown+\blacktriangle+\mathrm{2}\bigstar=\mathrm{19} \\ $$$$\mathrm{2}\oplus+\mathrm{8}\blacktrinagledown\:\centerdot\:\bigstar=\:? \\ $$$$\:\: \\ $$
Question Number 125743 Answers: 0 Comments: 7
$$\boldsymbol{{x}}\:;\:\boldsymbol{{y}}\:;\:\boldsymbol{{z}}\:\rightarrow\:\boldsymbol{{simple}}\:\boldsymbol{{numbers}}\:, \\ $$$$\boldsymbol{{y}}<\boldsymbol{{x}}<\boldsymbol{{z}}\:, \\ $$$$\boldsymbol{{y}}+\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{68}\:, \\ $$$$\boldsymbol{{y}}\:\centerdot\:\boldsymbol{{x}}\:+\:\boldsymbol{{x}}\:\centerdot\:\boldsymbol{{z}}\:+\:\boldsymbol{{z}}\:\centerdot\:\boldsymbol{{y}}\:=\:\mathrm{1121}\:, \\ $$$$\boldsymbol{{y}}\:\centerdot\:\boldsymbol{{x}}\:=\:? \\ $$
Question Number 125686 Answers: 0 Comments: 1
$${show}\:{that} \\ $$$${cos}\frac{\mathrm{4}\pi}{\mathrm{5}}+{cos}\frac{\mathrm{2}\pi}{\mathrm{5}}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 125670 Answers: 1 Comments: 0
$${N}<\mathrm{10200}\:,\:{N}\:{has}\:{five}\:{digits}. \\ $$$${N}\equiv\mathrm{22}\left[\mathrm{23}\right]\:{and}\:{N}\equiv\mathrm{5}\left[\mathrm{17}\right]. \\ $$$${Determinate}\:{the}\:{integer}\:{N}. \\ $$
Question Number 125669 Answers: 1 Comments: 0
$${we}\:{are}\:{in}\:\mathbb{C}. \\ $$$${solve}\:{z}^{\mathrm{5}} =\mathrm{1}. \\ $$$${show}\:{that}\:{the}\:{sum}\:{of}\:{its}\:{solutions}\:{is} \\ $$$${null}\:{the}\:{deduct}\:{that}\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 125654 Answers: 1 Comments: 1
Question Number 125632 Answers: 1 Comments: 0
Question Number 125577 Answers: 1 Comments: 1
Question Number 125539 Answers: 2 Comments: 1
Question Number 125504 Answers: 1 Comments: 0
$${n}!=\mathrm{2}^{\mathrm{10}} \centerdot\mathrm{10}!\left(\mathrm{1}\centerdot\mathrm{3}\centerdot\mathrm{5}\centerdot\mathrm{7}\centerdot\centerdot\centerdot\mathrm{19}\right)\:\:\:\:\:\:\:\:{n}=??? \\ $$$${help}\:{me} \\ $$
Question Number 125465 Answers: 1 Comments: 0
Question Number 125464 Answers: 0 Comments: 1
Question Number 125442 Answers: 1 Comments: 0
$${find}\:\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } } \\ $$
Question Number 125428 Answers: 0 Comments: 1
Question Number 125288 Answers: 1 Comments: 2
Question Number 125262 Answers: 0 Comments: 1
$$\mathrm{Find}\:{GP}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{permutation}\:\mathrm{where} \\ $$$$\:{P}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{b}}&{{c}}&{{a}}&{{d}}\end{pmatrix}\:\mathrm{and}\:{G}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{a}}&{{c}}&{{d}}&{{b}}\end{pmatrix} \\ $$$$\mathrm{explain} \\ $$
Question Number 125258 Answers: 0 Comments: 1
$${a},{b},{c}\:\:=>\:\:\blacktriangle\:\boldsymbol{{tomonlari}} \\ $$$$\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{b}}\right)+\left(\boldsymbol{{p}}−\boldsymbol{{c}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)+\left(\boldsymbol{{p}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{c}}\right)\geqslant\sqrt{\mathrm{3}}\:\boldsymbol{{S}} \\ $$
Question Number 125226 Answers: 0 Comments: 5
Question Number 125202 Answers: 2 Comments: 0
$$\:{Solve}\:{the}\:{reccurence}\:{relation} \\ $$$${a}_{{n}} \:=\:\mathrm{2}\left({a}_{{n}−\mathrm{1}} −{a}_{{n}−\mathrm{2}} \right)\:;\:{given}\:{a}_{\mathrm{0}} =\mathrm{1}\: \\ $$$${and}\:{a}_{\mathrm{1}} =\:\mathrm{0}. \\ $$
Question Number 125186 Answers: 1 Comments: 0
Question Number 125169 Answers: 0 Comments: 3
$${algebra} \\ $$
Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227 Pg 228 Pg 229 Pg 230
Terms of Service
Privacy Policy
Contact: info@tinkutara.com