Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 223

Question Number 131155    Answers: 2   Comments: 0

Given { ((a_(n+2) =a_(n+1) +(1/2)a_n )),((a_1 =3 ; a_2 =2)) :} find a_n .

$${Given}\:\begin{cases}{{a}_{{n}+\mathrm{2}} ={a}_{{n}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}{a}_{{n}} }\\{{a}_{\mathrm{1}} =\mathrm{3}\:;\:{a}_{\mathrm{2}} =\mathrm{2}}\end{cases} \\ $$$$\:{find}\:{a}_{{n}} . \\ $$

Question Number 206939    Answers: 1   Comments: 7

In how many ways can the word KINECTIC be arranged so that no vowels can be together?

In how many ways can the word KINECTIC be arranged so that no vowels can be together?

Question Number 131084    Answers: 2   Comments: 0

let solve this in R : x^4 −x^3 −4x^2 +x+1=0.

$$\mathrm{let}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{in}\:\mathbb{R}\::\: \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}. \\ $$

Question Number 131075    Answers: 1   Comments: 0

If a−3=−b−4=−c−5=d+6=e+7= a−b−c+d+e+8 then a−b−c+d+e =?

$$\mathrm{If}\:\mathrm{a}−\mathrm{3}=−\mathrm{b}−\mathrm{4}=−\mathrm{c}−\mathrm{5}=\mathrm{d}+\mathrm{6}=\mathrm{e}+\mathrm{7}= \\ $$$$\mathrm{a}−\mathrm{b}−\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{8}\:\mathrm{then}\:\mathrm{a}−\mathrm{b}−\mathrm{c}+\mathrm{d}+\mathrm{e}\:=? \\ $$

Question Number 131064    Answers: 3   Comments: 0

Question Number 131016    Answers: 0   Comments: 0

Question Number 130853    Answers: 1   Comments: 0

Question Number 130846    Answers: 1   Comments: 1

prove that 3sec^(−1) ((√2))−4csc^(−1) ((√2))+5cot^(−1) (2)=1.533

$${prove}\:{that} \\ $$$$\mathrm{3}{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)−\mathrm{4}{csc}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)+\mathrm{5}{cot}^{−\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{1}.\mathrm{533} \\ $$

Question Number 130806    Answers: 1   Comments: 0

Question Number 130802    Answers: 2   Comments: 0

Question Number 130800    Answers: 0   Comments: 1

Question Number 130733    Answers: 1   Comments: 1

Question Number 130719    Answers: 0   Comments: 2

$$ \\ $$

Question Number 130673    Answers: 0   Comments: 0

Question Number 130605    Answers: 2   Comments: 0

0^0 =??

$$\mathrm{0}^{\mathrm{0}} =?? \\ $$

Question Number 130593    Answers: 1   Comments: 3

if a_0 =1, a_1 =2 and a_(n+1) =(√(a_n a_(n−1) )) find a_n in terms of n.

$${if}\:{a}_{\mathrm{0}} =\mathrm{1},\:{a}_{\mathrm{1}} =\mathrm{2}\:{and}\:{a}_{{n}+\mathrm{1}} =\sqrt{{a}_{{n}} {a}_{{n}−\mathrm{1}} } \\ $$$${find}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$

Question Number 130496    Answers: 3   Comments: 0

(d/dx)(x!)=?

$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}!\right)=? \\ $$

Question Number 130476    Answers: 1   Comments: 0

Question Number 130472    Answers: 2   Comments: 0

Question Number 130455    Answers: 0   Comments: 0

f(x)=x+ln∣e^x −2∣ { ((f(x)=x+ln(e^x −2) x∈]ln2;+∞[)),((f(x)=x+ln(−e^x +2) x∈]−∞;ln2[)) :} lim_(x→+∞) f(x)=lim_(x→+∞) (x+ln(e^x −2))=+∞ lim_(x→−∞) f(x)=lim_(x→−∞) (x+ln(−e^x +2))=−∞ lim_(x→−∞) e^x =0 lim_(x→−∞) ln(−e^x +2)=ln2 lim_(x→−∞) (x+ln(−e^x +2)=−∞ lim_(x→^> ln2) f(x)=lim_(x→^> ln2) (x+ln(e^x −2))=−∞ lim_(x→^< ln2) f(x)=lim_(x→^< ln2) (x+ln(−e^x +2))=−∞

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{ln}\mid\mathrm{e}^{\mathrm{x}} −\mathrm{2}\mid \\ $$$$\begin{cases}{\left.\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} −\mathrm{2}\right)\:\:\:\:\:\:\mathrm{x}\in\right]\mathrm{ln2};+\infty\left[\right.}\\{\left.\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{ln}\left(−\mathrm{e}^{\mathrm{x}} +\mathrm{2}\right)\:\:\:\mathrm{x}\in\right]−\infty;\mathrm{ln2}\left[\right.}\end{cases} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}f}\left(\mathrm{x}\right)=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\mathrm{x}+\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} −\mathrm{2}\right)\right)=+\infty \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}f}\left(\mathrm{x}\right)=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\mathrm{x}+\mathrm{ln}\left(−\mathrm{e}^{\mathrm{x}} +\mathrm{2}\right)\right)=−\infty \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}e}^{\mathrm{x}} =\mathrm{0} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}ln}\left(−\mathrm{e}^{\mathrm{x}} +\mathrm{2}\right)=\mathrm{ln2} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\mathrm{x}+\mathrm{ln}\left(−\mathrm{e}^{\mathrm{x}} +\mathrm{2}\right)=−\infty\right. \\ $$$$\underset{{x}\overset{>} {\rightarrow}\mathrm{ln2}} {\mathrm{lim}f}\left(\mathrm{x}\right)=\underset{{x}\overset{>} {\rightarrow}\mathrm{ln2}} {\mathrm{lim}}\left(\mathrm{x}+\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} −\mathrm{2}\right)\right)=−\infty \\ $$$$\underset{{x}\overset{<} {\rightarrow}\mathrm{ln2}} {\mathrm{lim}f}\left(\mathrm{x}\right)=\underset{{x}\overset{<} {\rightarrow}\mathrm{ln2}} {\mathrm{lim}}\left(\mathrm{x}+\mathrm{ln}\left(−\mathrm{e}^{\mathrm{x}} +\mathrm{2}\right)\right)=−\infty \\ $$

Question Number 130442    Answers: 2   Comments: 0

g(x)=3x−2. determine a et b such that a ≤ g(x) ≤ b.

$${g}\left({x}\right)=\mathrm{3}{x}−\mathrm{2}. \\ $$$$\mathrm{determine}\:{a}\:\mathrm{et}\:{b}\:\mathrm{such}\:\mathrm{that}\:{a}\:\leqslant\:{g}\left({x}\right)\:\leqslant\:{b}. \\ $$

Question Number 130426    Answers: 2   Comments: 0

Question Number 130383    Answers: 1   Comments: 0

If (a−2)+3i=5−bi then a+b=

$${If}\:\left({a}−\mathrm{2}\right)+\mathrm{3}{i}=\mathrm{5}−{bi}\:{then}\:{a}+{b}= \\ $$

Question Number 130362    Answers: 3   Comments: 0

f(x)=((2x+1)/( (√(x^2 −∣2x−3∣)))) Domain D_f = ?

$$\mathrm{f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\mid\mathrm{2}{x}−\mathrm{3}\mid}} \\ $$$$\mathrm{Domain}\:\mathrm{D}_{\mathrm{f}} \:=\:? \\ $$

Question Number 130354    Answers: 5   Comments: 0

f(x)=((4x^2 +1)/(2x^2 +1)) prove that 1 ≤ f(x) ≤ 2

$$\mathrm{f}\left({x}\right)=\frac{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{1}\:\leqslant\:\mathrm{f}\left({x}\right)\:\leqslant\:\mathrm{2} \\ $$

Question Number 130290    Answers: 1   Comments: 0

Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ (1/3^(i+j+k) ) ? where i≠j≠k

$$\:\underset{\mathrm{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{\mathrm{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{i}+\mathrm{j}+\mathrm{k}} }\:?\:\mathrm{where}\:\mathrm{i}\neq\mathrm{j}\neq\mathrm{k} \\ $$

  Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com