Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 223

Question Number 133318    Answers: 1   Comments: 0

(a) Are there any graphs with 5 vertices which have vertices of degrees 1,2,3,4 and 5?

$$\left(\mathrm{a}\right)\:\mathrm{Are}\:\mathrm{there}\:\mathrm{any}\:\mathrm{graphs}\:\mathrm{with}\:\mathrm{5} \\ $$$$\mathrm{vertices}\:\mathrm{which}\:\mathrm{have}\:\mathrm{vertices}\:\mathrm{of}\: \\ $$$$\mathrm{degrees}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\:\mathrm{and}\:\mathrm{5}?\: \\ $$

Question Number 133279    Answers: 0   Comments: 0

hi, everybody ! with n ∈ N, prove that : ∃ n_0 ∈ N / ∀ n ≥ n_0 , n^2 ≤ 2^n .

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{n}}\:\in\:\mathbb{N}, \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\::\:\exists\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:\in\:\mathbb{N}\:/\:\forall\:\boldsymbol{\mathrm{n}}\:\geqslant\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:,\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} . \\ $$

Question Number 133201    Answers: 2   Comments: 0

(√(81))

$$\sqrt{\mathrm{81}} \\ $$

Question Number 133180    Answers: 1   Comments: 3

Question Number 133072    Answers: 1   Comments: 0

Show that (5/(2−(3)^(1/4) )) is in F_2 by expressing the number in form a_1 +b_1 (√k_1 ) where a_1 ,b_1 , k_1 are in F_1

$$\mathrm{Show}\:\mathrm{that}\:\frac{\mathrm{5}}{\mathrm{2}−\sqrt[{\mathrm{4}}]{\mathrm{3}}}\:\mathrm{is}\:\mathrm{in}\:\mathrm{F}_{\mathrm{2}} \:\mathrm{by}\:\mathrm{expressing} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{in}\:\mathrm{form}\:{a}_{\mathrm{1}} +{b}_{\mathrm{1}} \sqrt{{k}_{\mathrm{1}} }\:\mathrm{where} \\ $$$${a}_{\mathrm{1}} ,{b}_{\mathrm{1}} ,\:{k}_{\mathrm{1}} \:{are}\:{in}\:{F}_{\mathrm{1}} \\ $$

Question Number 133053    Answers: 1   Comments: 0

When the polynomial f(x) is divided by (x−2) the remainder is 4 and when it is divided (x−3) the remainder is 7. Given that f(x) may be written in the formf(x)=(x−2)(x−3)Q(x)+ax+b, find the remainder when f(x) is divided by (x−2)(x−3). If also f(x) is a cubic function in which the coefficient of x^3 is unity and f(1)=1, determine Q(x).

$$\mathrm{When}\:\mathrm{the}\:\mathrm{polynomial}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\left(\mathrm{x}−\mathrm{2}\right)\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{4}\:\mathrm{and}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{7}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{f}\left({x}\right) \\ $$$$\mathrm{may}\:\mathrm{be}\:\mathrm{written}\:\mathrm{in}\:\mathrm{the}\:\mathrm{formf}\left({x}\right)=\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right)\mathrm{Q}\left(\mathrm{x}\right)+\mathrm{ax}+\mathrm{b}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right).\:\mathrm{If}\:\mathrm{also}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{function} \\ $$$$\mathrm{in}\:\mathrm{which}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1},\:\mathrm{determine}\:\mathrm{Q}\left(\mathrm{x}\right). \\ $$

Question Number 133009    Answers: 1   Comments: 1

Question Number 132961    Answers: 1   Comments: 0

Question Number 132900    Answers: 0   Comments: 1

a pinhole camera is placed 300cm in front of a building so that the image is formed on a screen 5cm from the pin hole. if the image is 2.5cm high. the height of the building will be?

$${a}\:{pinhole}\:{camera}\:{is}\:{placed}\:\mathrm{300}{cm} \\ $$$${in}\:{front}\:{of}\:{a}\:{building}\:{so}\:{that}\:{the}\:{image} \\ $$$${is}\:{formed}\:{on}\:{a}\:{screen}\:\mathrm{5}{cm}\:{from}\:{the} \\ $$$${pin}\:{hole}.\:{if}\:{the}\:{image}\:{is}\:\mathrm{2}.\mathrm{5}{cm}\:{high}. \\ $$$${the}\:{height}\:{of}\:{the}\:{building}\:{will}\:{be}? \\ $$

Question Number 132697    Answers: 3   Comments: 2

Find the condition that one root of ax^2 +bx+c = 0 ,a≠ 0 is square of the other .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that}\:\mathrm{one} \\ $$$$\mathrm{root}\:\mathrm{of}\:{ax}^{\mathrm{2}} +{bx}+{c}\:=\:\mathrm{0}\:,{a}\neq\:\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{square}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:. \\ $$

Question Number 132630    Answers: 0   Comments: 0

Question Number 132535    Answers: 1   Comments: 0

Question Number 132494    Answers: 2   Comments: 3

Question Number 132470    Answers: 2   Comments: 0

∫ tan^3 x dx

$$\int\:\mathrm{tan}^{\mathrm{3}} {x}\:{dx} \\ $$

Question Number 132390    Answers: 1   Comments: 0

does anyone know a practicaly way of finding results from (4−3x+2x^2 −x^4 )×(−1+3x^2 −x^5 )?

$$\mathrm{does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{a}\:\mathrm{practicaly} \\ $$$$\mathrm{way}\:\mathrm{of}\:\mathrm{finding}\:\mathrm{results}\:\mathrm{from} \\ $$$$\:\left(\mathrm{4}−\mathrm{3x}+\mathrm{2x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{4}} \right)×\left(−\mathrm{1}+\mathrm{3x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{5}} \right)? \\ $$

Question Number 132358    Answers: 0   Comments: 2

find the equation whose roots are α and β. find α and β if α−β=2 and α^2 −β^2 =3

$${find}\:{the}\:{equation}\:{whose}\:{roots}\:{are} \\ $$$$\alpha\:{and}\:\beta.\:{find}\:\alpha\:{and}\:\beta\:{if}\:\:\alpha−\beta=\mathrm{2}\:{and}\:\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} =\mathrm{3} \\ $$

Question Number 132295    Answers: 0   Comments: 4

Question Number 132285    Answers: 2   Comments: 0

Simplify the equation of (((x^(1/3) −x^(1/6) )(x^(1/2) +x)(x^(1/2) +x^(1/3) +x^(2/3) ))/((x^(4/3) −x)(x+x^(1/3) +x^(2/3) ))) with x ≠ 0

$$\mathrm{Simplify}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\: \\ $$$$\frac{\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{x}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}{\left(\mathrm{x}^{\frac{\mathrm{4}}{\mathrm{3}}} −\mathrm{x}\right)\left(\mathrm{x}+\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)} \\ $$$$\mathrm{with}\:\mathrm{x}\:\neq\:\mathrm{0} \\ $$$$ \\ $$

Question Number 132260    Answers: 1   Comments: 0

Question Number 132257    Answers: 1   Comments: 0

Question Number 132198    Answers: 2   Comments: 0

If { ((16^(a+b) = ((√2)/2))),((16^(b+c) = 2)),((16^(a+c) = 2(√2))) :} then c = __

$$\mathrm{If}\:\begin{cases}{\mathrm{16}^{{a}+{b}} \:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\mathrm{16}^{{b}+{c}} \:=\:\mathrm{2}}\\{\mathrm{16}^{{a}+{c}} \:=\:\mathrm{2}\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\:\mathrm{then}\:\mathrm{c}\:=\:\_\_\: \\ $$

Question Number 132180    Answers: 1   Comments: 0

solve : 2sec^2 x+(2(√2)−3)secx−3(√2)=0 ; 0≤x≤(π/4)

$${solve}\:: \\ $$$$\mathrm{2}{sec}^{\mathrm{2}} {x}+\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right){secx}−\mathrm{3}\sqrt{\mathrm{2}}=\mathrm{0}\:;\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$

Question Number 132031    Answers: 0   Comments: 3

Question Number 131932    Answers: 1   Comments: 0

if x=18 and y=17 then find (x+y)(x^2 +y^2 )(x^4 +y^4 )(x^8 +y^8 )

$${if}\:{x}=\mathrm{18}\:{and}\:{y}=\mathrm{17}\:{then}\:{find} \\ $$$$\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right)\left({x}^{\mathrm{8}} +{y}^{\mathrm{8}} \right) \\ $$

Question Number 131697    Answers: 2   Comments: 0

x^x =6 x=?

$${x}^{{x}} =\mathrm{6}\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$

Question Number 131688    Answers: 2   Comments: 0

Let α and β are the roots of the equation x^2 −6x−2=0. If a_n = α^n −β^n for n ≥1 then the value of ((a_(10) −2a_8 )/(2a_9 )) ?

$$\:\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{2}=\mathrm{0}. \\ $$$$\mathrm{If}\:{a}_{{n}} \:=\:\alpha^{{n}} −\beta^{{n}} \:\mathrm{for}\:{n}\:\geqslant\mathrm{1}\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{a}_{\mathrm{10}} −\mathrm{2}{a}_{\mathrm{8}} }{\mathrm{2}{a}_{\mathrm{9}} }\:? \\ $$

  Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226      Pg 227   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com