Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 222

Question Number 128903    Answers: 2   Comments: 0

solve the differential equation (dy^2 /dx^(2 ) )+y=0

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}^{\mathrm{2}} }{{dx}^{\mathrm{2}\:} }+{y}=\mathrm{0} \\ $$

Question Number 128850    Answers: 1   Comments: 0

(√(x+(√(4x+(√(16x+(√(64x+...+(√(4^(2019) x+3))))))))))−(√x)=1 x=?

$$\sqrt{{x}+\sqrt{\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+\sqrt{\mathrm{64}{x}+...+\sqrt{\mathrm{4}^{\mathrm{2019}} {x}+\mathrm{3}}}}}}−\sqrt{{x}}=\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 128715    Answers: 0   Comments: 1

fine the number thats divided by 3,4,5 and 9 and produce the remanider with order 1,3,5 and 7??

$${fine}\:{the}\:{number}\:{thats}\:{divided}\:{by}\: \\ $$$$\mathrm{3},\mathrm{4},\mathrm{5}\:{and}\:\mathrm{9}\:{and}\:{produce}\:{the}\:{remanider} \\ $$$${with}\:{order}\:\mathrm{1},\mathrm{3},\mathrm{5}\:{and}\:\mathrm{7}?? \\ $$

Question Number 128712    Answers: 2   Comments: 1

if P(x−1)=2x^3 ∙Q(x)+x^2 find ((P(1)−4)/(Q(x)))=??

$${if}\:{P}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} \centerdot{Q}\left({x}\right)+{x}^{\mathrm{2}} \\ $$$${find}\:\frac{{P}\left(\mathrm{1}\right)−\mathrm{4}}{{Q}\left({x}\right)}=?? \\ $$

Question Number 128698    Answers: 1   Comments: 3

Question Number 128684    Answers: 1   Comments: 0

how we can convert 0.9^− to (q/p)?

$${how}\:{we}\:{can}\:{convert}\:\mathrm{0}.\overset{−} {\mathrm{9}}\:{to}\:\frac{{q}}{{p}}? \\ $$

Question Number 128636    Answers: 1   Comments: 0

Solve diopthantine equation (1/a)+(1/b) = (2/(17)).

$$\mathrm{Solve}\:\mathrm{diopthantine}\:\mathrm{equation}\: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\:=\:\frac{\mathrm{2}}{\mathrm{17}}. \\ $$

Question Number 128632    Answers: 0   Comments: 0

Question Number 128617    Answers: 1   Comments: 1

Question Number 128589    Answers: 1   Comments: 0

...nice calculus... a∈R^+ & }⇒ (√(a−(√a) )) =? a^2 −17a=16(√a)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:{a}\in\mathbb{R}^{+} \:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\&\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\right\}\Rightarrow\:\sqrt{{a}−\sqrt{{a}}\:}\:=? \\ $$$$\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{17}{a}=\mathrm{16}\sqrt{{a}}\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 128509    Answers: 1   Comments: 0

Question Number 128508    Answers: 1   Comments: 0

if x^x^3 =3 find x

$${if}\:\:{x}^{{x}^{\mathrm{3}} } =\mathrm{3} \\ $$$${find}\:{x} \\ $$

Question Number 128457    Answers: 0   Comments: 1

Question Number 128459    Answers: 1   Comments: 0

For any complex number z,z^n =z^ has (n+2) solutions How???

$${For}\:{any}\:{complex}\:{number}\:{z},{z}^{{n}} =\bar {{z}}\:{has}\:\left({n}+\mathrm{2}\right)\:{solutions}\:{How}??? \\ $$

Question Number 128388    Answers: 0   Comments: 1

y=−sin((Π/2)+2x)+2cos(5x+Π) y_(min) = ??

$${y}=−{sin}\left(\frac{\Pi}{\mathrm{2}}+\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{5}{x}+\Pi\right) \\ $$$${y}_{{min}} =\:?? \\ $$

Question Number 128458    Answers: 0   Comments: 1

Question Number 128371    Answers: 1   Comments: 1

Question Number 128369    Answers: 2   Comments: 0

If u_1 + u_2 + u_3 + ... + u_n = 2n^2 + n is an AP. Find u_1 + u_2 + u_3 + ... + u_(2n − 2) + u_(2n − 1)

$$\mathrm{If}\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{n}} \:\:\:=\:\:\:\mathrm{2n}^{\mathrm{2}} \:\:+\:\:\mathrm{n}\:\:\:\mathrm{is}\:\mathrm{an}\:\mathrm{AP}. \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\mathrm{u}_{\mathrm{1}} \:\:+\:\:\mathrm{u}_{\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{3}} \:\:+\:\:...\:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{2}} \:\:+\:\:\mathrm{u}_{\mathrm{2n}\:\:−\:\:\mathrm{1}} \\ $$

Question Number 128368    Answers: 2   Comments: 0

If a_1 = 2, a_2 = 3, a_(n + 2) = a_(n + 1) + (a/2), find a_n

$$\mathrm{If}\:\:\:\:\mathrm{a}_{\mathrm{1}} \:=\:\:\mathrm{2},\:\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{3},\:\:\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \:\:=\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} \:\:+\:\:\frac{\mathrm{a}}{\mathrm{2}},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 128341    Answers: 1   Comments: 5

Which is larger Z = (1/(2+(3/(6−(4/(11)))))) or S = (1/(2+(3/(6−(5/(11)))))) ?

$$\mathrm{Which}\:\mathrm{is}\:\mathrm{larger}\:\mathrm{Z}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{4}}{\mathrm{11}}}}\:\mathrm{or}\:\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{6}−\frac{\mathrm{5}}{\mathrm{11}}}}\:? \\ $$

Question Number 128329    Answers: 2   Comments: 0

(2)Solution set : x ∣2x−6 ∣ < 3x is _ (2) If lim_(x→2) ((2−(√(a+bx^3 )))/(x−2)) = H , then lim_(x→2) ((x^2 −4)/( (√(a+bx^3 ))−1)) = _

$$\left(\mathrm{2}\right)\mathrm{Solution}\:\mathrm{set}\::\:{x}\:\mid\mathrm{2}{x}−\mathrm{6}\:\mid\:<\:\mathrm{3}{x}\: \\ $$$$\mathrm{is}\:\_ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt{{a}+{bx}^{\mathrm{3}} }}{{x}−\mathrm{2}}\:=\:{H}\:,\:{then} \\ $$$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{{a}+{bx}^{\mathrm{3}} }−\mathrm{1}}\:=\:\_ \\ $$

Question Number 128290    Answers: 0   Comments: 4

find 10−(1/(10−(1/(10−(1/(10−(1/(10−......))))))))=? (A) 5−2(√6) (B) 5+2(√6) (C) 5±2(√6) (D) none of above please give your answer and explain why!

$${find}\:\mathrm{10}−\frac{\mathrm{1}}{\mathrm{10}−\frac{\mathrm{1}}{\mathrm{10}−\frac{\mathrm{1}}{\mathrm{10}−\frac{\mathrm{1}}{\mathrm{10}−......}}}}=? \\ $$$$\left({A}\right)\:\:\:\:\:\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\left({B}\right)\:\:\:\:\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\left({C}\right)\:\:\:\:\:\mathrm{5}\pm\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\left({D}\right)\:\:\:\:\:{none}\:{of}\:{above} \\ $$$$ \\ $$$${please}\:{give}\:{your}\:{answer}\:{and}\:{explain} \\ $$$${why}! \\ $$

Question Number 128264    Answers: 1   Comments: 3

((2207−(1/(2207−(1/(2207−(1/(2207−(1/(2207−...))))))))))^(1/(8 ))

$$\sqrt[{\mathrm{8}\:\:\:\:}]{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−...}}}}} \\ $$

Question Number 128232    Answers: 0   Comments: 0

1.For n∈N,define s_n =1+2^2^n +2^2^(n+1) .Which of the following is false for some values of n∈N? A.3∣s_n B.7∣s_n C.s_n ∣s_(n+1) D.s_n ^( 2) >s_(n+1) E.12s_1 s_2 ...s_n <s_(n+1)

$$\mathrm{1}.\mathrm{For}\:\mathrm{n}\in\mathbb{N},\mathrm{define}\:\:\mathrm{s}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}^{\mathrm{2}^{\mathrm{n}} } +\mathrm{2}^{\mathrm{2}^{\mathrm{n}+\mathrm{1}} } .\mathrm{Which}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{false}\:\mathrm{for}\:\mathrm{some}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\in\mathbb{N}? \\ $$$$\mathrm{A}.\mathrm{3}\mid\mathrm{s}_{\mathrm{n}} \\ $$$$\mathrm{B}.\mathrm{7}\mid\mathrm{s}_{\mathrm{n}} \\ $$$$\mathrm{C}.\mathrm{s}_{\mathrm{n}} \mid\mathrm{s}_{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{D}.\mathrm{s}_{\mathrm{n}} ^{\:\mathrm{2}} >\mathrm{s}_{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{E}.\mathrm{12s}_{\mathrm{1}} \mathrm{s}_{\mathrm{2}} ...\mathrm{s}_{\mathrm{n}} <\mathrm{s}_{\mathrm{n}+\mathrm{1}} \\ $$

Question Number 128204    Answers: 0   Comments: 0

Let x, y, z be pairwise distinct real numbers, if (x + y − 7)[z(x + y) + 24] = (y + z − 7)[x(y + z) + 24] = (z + x − 7)[y(z + x) + 24] Find x^2 + y^2 + z^2

$$\mathrm{Let}\:\:\:\mathrm{x},\:\:\mathrm{y},\:\:\mathrm{z}\:\:\:\mathrm{be}\:\mathrm{pairwise}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{if} \\ $$$$\:\:\left(\mathrm{x}\:\:+\:\:\mathrm{y}\:\:−\:\:\mathrm{7}\right)\left[\mathrm{z}\left(\mathrm{x}\:\:+\:\:\mathrm{y}\right)\:\:+\:\:\mathrm{24}\right]\:\:\:=\:\:\left(\mathrm{y}\:\:+\:\:\mathrm{z}\:\:−\:\:\mathrm{7}\right)\left[\mathrm{x}\left(\mathrm{y}\:\:+\:\:\mathrm{z}\right)\:\:+\:\:\mathrm{24}\right]\:\:\:=\:\:\:\left(\mathrm{z}\:\:+\:\:\mathrm{x}\:\:−\:\:\mathrm{7}\right)\left[\mathrm{y}\left(\mathrm{z}\:\:+\:\:\mathrm{x}\right)\:\:+\:\:\mathrm{24}\right] \\ $$$$\mathrm{Find}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{z}^{\mathrm{2}} \\ $$

Question Number 128171    Answers: 0   Comments: 0

  Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com