Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 222

Question Number 134067    Answers: 1   Comments: 0

Calculate lim_(n→∞) Π_(k=2) ^n ((k^3 −1)/(k^3 +1)) = ?

$$\:\mathrm{Calculate}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\prod}}\:\frac{\mathrm{k}^{\mathrm{3}} −\mathrm{1}}{\mathrm{k}^{\mathrm{3}} +\mathrm{1}}\:=\:? \\ $$

Question Number 134061    Answers: 1   Comments: 0

If Σ a_n is a convergent series of nonnegative terms,what can be said about Σ a_n .a_(n+1) ? (a) always converges (b) always diverges (c) may converges or diverge

$$\mathrm{If}\:\Sigma\:\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{convergent}\:\mathrm{series}\:\mathrm{of} \\ $$$$\mathrm{nonnegative}\:\mathrm{terms},\mathrm{what}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{said}\:\mathrm{about}\:\Sigma\:\mathrm{a}_{\mathrm{n}} .\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{always}\:\mathrm{converges} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{always}\:\mathrm{diverges} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{may}\:\mathrm{converges}\:\mathrm{or}\:\mathrm{diverge} \\ $$

Question Number 134060    Answers: 2   Comments: 0

If p>1 and q>1 what can be said about the convergence of Σ_(n=2) ^∞ (1/(n^p .(ln n)^q )) ? (a) always converges (b) always diverges (c) may converges or diverges

$$\mathrm{If}\:\mathrm{p}>\mathrm{1}\:\mathrm{and}\:\mathrm{q}>\mathrm{1}\:\mathrm{what}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{said}\:\mathrm{about}\:\mathrm{the}\:\mathrm{convergence}\: \\ $$$$\mathrm{of}\:\underset{\mathrm{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{p}} .\left(\mathrm{ln}\:\mathrm{n}\right)^{\mathrm{q}} }\:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{always}\:\mathrm{converges} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{always}\:\mathrm{diverges} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{may}\:\mathrm{converges}\:\mathrm{or}\:\mathrm{diverges} \\ $$

Question Number 134052    Answers: 1   Comments: 0

Question Number 134034    Answers: 1   Comments: 0

how many zeros has the number 1000! at the end? and what is the last digit before these zeros?

$${how}\:{many}\:{zeros}\:{has}\:{the}\:{number} \\ $$$$\mathrm{1000}!\:{at}\:{the}\:{end}?\:{and}\:{what}\:{is}\:{the} \\ $$$${last}\:{digit}\:{before}\:{these}\:{zeros}? \\ $$

Question Number 134005    Answers: 1   Comments: 0

solve x^3 −2⌊x⌋=5

$${solve}\:{x}^{\mathrm{3}} −\mathrm{2}\lfloor{x}\rfloor=\mathrm{5} \\ $$

Question Number 133996    Answers: 2   Comments: 0

show that (√2)<log_2 3<(√3)

$${show}\:{that}\:\sqrt{\mathrm{2}}<\mathrm{log}_{\mathrm{2}} \:\mathrm{3}<\sqrt{\mathrm{3}} \\ $$

Question Number 133991    Answers: 1   Comments: 0

∣ 3x−∣ 4x+2 ∣∣ ≥ 4 > ∣ 5x+8 ∣

$$\:\mid\:\mathrm{3x}−\mid\:\mathrm{4x}+\mathrm{2}\:\mid\mid\:\geqslant\:\mathrm{4}\:>\:\mid\:\mathrm{5x}+\mathrm{8}\:\mid\: \\ $$

Question Number 133903    Answers: 0   Comments: 3

Question Number 133885    Answers: 1   Comments: 2

Consider the equations of two intersecting straight lines { ((ax+by+c=0)),((a_1 x+b_1 y+c_1 =0)) :} Find the equation of straight line passing through a given point (x_0 ,y_0 ) and the intersection point of the given straight lines.

$$\:\mathrm{Consider}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{two} \\ $$$$\mathrm{intersecting}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\begin{cases}{{ax}+{by}+{c}=\mathrm{0}}\\{{a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} =\mathrm{0}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{a}\:\mathrm{given}\:\mathrm{point} \\ $$$$\left(\mathrm{x}_{\mathrm{0}} ,\mathrm{y}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{point} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{straight}\:\mathrm{lines}. \\ $$

Question Number 133793    Answers: 0   Comments: 1

Question Number 133981    Answers: 2   Comments: 0

If x = 5+2(√6) then ((x−1)/( (√x))) =?

$$\mathrm{If}\:{x}\:=\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{then}\:\frac{{x}−\mathrm{1}}{\:\sqrt{{x}}}\:=? \\ $$

Question Number 133783    Answers: 0   Comments: 1

To complete a job, 24 worker are needed in 35 days. After they worked for 8 days , half of the workers stopped working . In order for work to be completed , an additional time of .... days needed (a) 54 (b) 38 (c) 28 (d) 14 (e) 19

$$\mathrm{To}\:\mathrm{complete}\:\mathrm{a}\:\mathrm{job},\:\mathrm{24}\:\mathrm{worker}\:\mathrm{are} \\ $$$$\mathrm{needed}\:\mathrm{in}\:\mathrm{35}\:\mathrm{days}.\:\mathrm{After}\:\mathrm{they}\:\mathrm{worked} \\ $$$$\mathrm{for}\:\mathrm{8}\:\mathrm{days}\:,\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{workers}\: \\ $$$$\mathrm{stopped}\:\mathrm{working}\:.\:\mathrm{In}\:\mathrm{order}\:\mathrm{for} \\ $$$$\mathrm{work}\:\mathrm{to}\:\mathrm{be}\:\mathrm{completed}\:,\:\mathrm{an}\:\mathrm{additional} \\ $$$$\mathrm{time}\:\mathrm{of}\:....\:\mathrm{days}\:\mathrm{needed} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{54}\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{38}\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{28}\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{14} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{19}\: \\ $$

Question Number 133738    Answers: 3   Comments: 0

Question Number 133664    Answers: 1   Comments: 0

Question Number 133653    Answers: 1   Comments: 0

hi, everybody ! how to prove that 𝛑 is an irrational number ???

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\pi}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{irrational}}\:\boldsymbol{\mathrm{number}}\:??? \\ $$

Question Number 133612    Answers: 0   Comments: 2

If { ((x+y+2z=k)),((x+2y+z=k)),((2x+y+z=k)) :} ; k≠ 0 then x^2 +y^2 +z^2 =?

$$\mathrm{If}\:\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{2z}=\mathrm{k}}\\{\mathrm{x}+\mathrm{2y}+\mathrm{z}=\mathrm{k}}\\{\mathrm{2x}+\mathrm{y}+\mathrm{z}=\mathrm{k}}\end{cases}\:;\:\mathrm{k}\neq\:\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \:=? \\ $$$$ \\ $$

Question Number 133568    Answers: 2   Comments: 0

Proof the series Σ_(n=1) ^∞ (2/(9+2n(ln n)^2 )) convergent

$$\mathrm{Proof}\:\mathrm{the}\:\mathrm{series}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}}{\mathrm{9}+\mathrm{2n}\left(\mathrm{ln}\:\mathrm{n}\right)^{\mathrm{2}} } \\ $$$$\mathrm{convergent} \\ $$$$ \\ $$

Question Number 133542    Answers: 0   Comments: 1

Question Number 133469    Answers: 1   Comments: 0

find x in terms of a ((1+x−(√(2x+x^2 )))/(1+x+(√(2x+x^2 ))))=a^3 (((√(2+x))+(√x))/( (√(2+x))−(√x)))

$${find}\:{x}\:{in}\:{terms}\:{of}\:{a} \\ $$$$\frac{\mathrm{1}+{x}−\sqrt{\mathrm{2}{x}+{x}^{\mathrm{2}} }}{\mathrm{1}+{x}+\sqrt{\mathrm{2}{x}+{x}^{\mathrm{2}} }}={a}^{\mathrm{3}} \frac{\sqrt{\mathrm{2}+{x}}+\sqrt{{x}}}{\:\sqrt{\mathrm{2}+{x}}−\sqrt{{x}}} \\ $$

Question Number 133450    Answers: 0   Comments: 0

$$ \\ $$

Question Number 133423    Answers: 1   Comments: 4

Question Number 133318    Answers: 1   Comments: 0

(a) Are there any graphs with 5 vertices which have vertices of degrees 1,2,3,4 and 5?

$$\left(\mathrm{a}\right)\:\mathrm{Are}\:\mathrm{there}\:\mathrm{any}\:\mathrm{graphs}\:\mathrm{with}\:\mathrm{5} \\ $$$$\mathrm{vertices}\:\mathrm{which}\:\mathrm{have}\:\mathrm{vertices}\:\mathrm{of}\: \\ $$$$\mathrm{degrees}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\:\mathrm{and}\:\mathrm{5}?\: \\ $$

Question Number 133279    Answers: 0   Comments: 0

hi, everybody ! with n ∈ N, prove that : ∃ n_0 ∈ N / ∀ n ≥ n_0 , n^2 ≤ 2^n .

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{n}}\:\in\:\mathbb{N}, \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\::\:\exists\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:\in\:\mathbb{N}\:/\:\forall\:\boldsymbol{\mathrm{n}}\:\geqslant\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:,\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} . \\ $$

Question Number 133201    Answers: 2   Comments: 0

(√(81))

$$\sqrt{\mathrm{81}} \\ $$

Question Number 133180    Answers: 1   Comments: 3

  Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222      Pg 223      Pg 224      Pg 225      Pg 226   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com