Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 222
Question Number 132358 Answers: 0 Comments: 2
$${find}\:{the}\:{equation}\:{whose}\:{roots}\:{are} \\ $$$$\alpha\:{and}\:\beta.\:{find}\:\alpha\:{and}\:\beta\:{if}\:\:\alpha−\beta=\mathrm{2}\:{and}\:\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} =\mathrm{3} \\ $$
Question Number 132295 Answers: 0 Comments: 4
Question Number 132285 Answers: 2 Comments: 0
$$\mathrm{Simplify}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\: \\ $$$$\frac{\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{x}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}{\left(\mathrm{x}^{\frac{\mathrm{4}}{\mathrm{3}}} −\mathrm{x}\right)\left(\mathrm{x}+\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)} \\ $$$$\mathrm{with}\:\mathrm{x}\:\neq\:\mathrm{0} \\ $$$$ \\ $$
Question Number 132260 Answers: 1 Comments: 0
Question Number 132257 Answers: 1 Comments: 0
Question Number 132198 Answers: 2 Comments: 0
$$\mathrm{If}\:\begin{cases}{\mathrm{16}^{{a}+{b}} \:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\mathrm{16}^{{b}+{c}} \:=\:\mathrm{2}}\\{\mathrm{16}^{{a}+{c}} \:=\:\mathrm{2}\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\:\mathrm{then}\:\mathrm{c}\:=\:\_\_\: \\ $$
Question Number 132180 Answers: 1 Comments: 0
$${solve}\:: \\ $$$$\mathrm{2}{sec}^{\mathrm{2}} {x}+\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right){secx}−\mathrm{3}\sqrt{\mathrm{2}}=\mathrm{0}\:;\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$
Question Number 132031 Answers: 0 Comments: 3
Question Number 131932 Answers: 1 Comments: 0
$${if}\:{x}=\mathrm{18}\:{and}\:{y}=\mathrm{17}\:{then}\:{find} \\ $$$$\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right)\left({x}^{\mathrm{8}} +{y}^{\mathrm{8}} \right) \\ $$
Question Number 131697 Answers: 2 Comments: 0
$${x}^{{x}} =\mathrm{6}\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$
Question Number 131688 Answers: 2 Comments: 0
$$\:\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{2}=\mathrm{0}. \\ $$$$\mathrm{If}\:{a}_{{n}} \:=\:\alpha^{{n}} −\beta^{{n}} \:\mathrm{for}\:{n}\:\geqslant\mathrm{1}\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{a}_{\mathrm{10}} −\mathrm{2}{a}_{\mathrm{8}} }{\mathrm{2}{a}_{\mathrm{9}} }\:? \\ $$
Question Number 131640 Answers: 1 Comments: 0
Question Number 131605 Answers: 2 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:{m}^{\mathrm{4}} −\mathrm{7}{m}^{\mathrm{3}} +\:\mathrm{14}{m}^{\mathrm{2}} −\mathrm{7}{m}\:+\:\mathrm{1}\:=\:\mathrm{0}\: \\ $$
Question Number 131480 Answers: 0 Comments: 0
$${what}\:{are}\:{the}\:{condition}\:{for}\:{absolute}\: \\ $$$${inequality}? \\ $$
Question Number 131440 Answers: 0 Comments: 2
$$\mid\mathrm{2}{x}+\mathrm{7}\mid<−\mathrm{2}\:\:\:\:\:\:{solve}=? \\ $$
Question Number 131430 Answers: 2 Comments: 2
$$\sqrt[{\frac{\mathrm{1}}{{x}}}]{\left(\sqrt[{\frac{\mathrm{1}}{{x}}}]{\left.{x}\:^{{x}} \right)^{{x}} }\right.}=\mathrm{4}\:\:\:\:\:\:\:{find}\:\:{x}=? \\ $$
Question Number 131421 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{trig}\:\mathrm{method} \\ $$$$\:\:\mathrm{8x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 131390 Answers: 0 Comments: 0
Question Number 131374 Answers: 3 Comments: 0
Question Number 131363 Answers: 0 Comments: 2
Question Number 131343 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{mapping}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:{G}\rightarrow{S}\:\mathrm{where}\:\left({G},×\right)\:\mathrm{and}\:\left({S},+\right), \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{mapping}\:{f}\left({x}\right)\:=\:\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{isomophism}. \\ $$
Question Number 131309 Answers: 2 Comments: 0
Question Number 131218 Answers: 2 Comments: 0
Question Number 131214 Answers: 1 Comments: 0
Question Number 131201 Answers: 2 Comments: 0
Question Number 131158 Answers: 1 Comments: 0
$${If}\:\mathrm{4}{a}_{{n}} +\mathrm{2}{a}_{−{n}} =\mathrm{3}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{3} \\ $$$${find}\:{a}_{{n}} \:=? \\ $$
Pg 217 Pg 218 Pg 219 Pg 220 Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226
Terms of Service
Privacy Policy
Contact: info@tinkutara.com