Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 2

Question Number 221944    Answers: 1   Comments: 1

Question Number 221943    Answers: 1   Comments: 0

Question Number 221863    Answers: 1   Comments: 1

If a and b are whole numbers such a^b =121 then find the value of (a−1)^(b+1)

$${If}\:{a}\:{and}\:{b}\:{are}\:{whole}\:{numbers}\:{such}\:{a}^{{b}} =\mathrm{121} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\left({a}−\mathrm{1}\right)^{{b}+\mathrm{1}} \\ $$

Question Number 221856    Answers: 0   Comments: 3

Question Number 221848    Answers: 0   Comments: 2

Question Number 221829    Answers: 4   Comments: 0

(√(70.71.72.73+1))

$$\sqrt{\mathrm{70}.\mathrm{71}.\mathrm{72}.\mathrm{73}+\mathrm{1}} \\ $$

Question Number 221782    Answers: 0   Comments: 0

(((81))^(1/((27))^(1/3^a ) ) )^((√4)) where a=4^0^4^3 and b=Σ_(n=1) ^6 n

$$\left(\sqrt[{\sqrt[{\mathrm{3}^{{a}} }]{\mathrm{27}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$$${where}\:{a}=\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } {and}\:{b}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{n} \\ $$

Question Number 221778    Answers: 0   Comments: 0

For ∀n∈N^∗ ,n≥3 Prove: ∫_0 ^1 (Σ_(2<p≤2n) e^(2πip+α) )^2 e^(−4πinα) dα>0,p is a prime number

$$\mathrm{For}\:\forall{n}\in\boldsymbol{{N}}^{\ast} ,{n}\geq\mathrm{3}\:\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{\mathrm{2}<{p}\leq\mathrm{2}{n}} {\sum}{e}^{\mathrm{2}\pi{ip}+\alpha} \right)^{\mathrm{2}} {e}^{−\mathrm{4}\pi{in}\alpha} {d}\alpha>\mathrm{0},{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number} \\ $$

Question Number 221754    Answers: 1   Comments: 0

((81))^(1/((64))^(1/((27))^(1/( 3^4^0^4^3 )) ) ) )^((√4))

$$\left.\sqrt[{\sqrt[{\sqrt[{\:\mathrm{3}^{\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } } }]{\mathrm{27}}}]{\mathrm{64}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$

Question Number 221647    Answers: 0   Comments: 1

solve for x. x^1 + x^2 + x^3 = 4096

$${solve}\:{for}\:{x}. \\ $$$${x}^{\mathrm{1}} \:+\:{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} \:\:=\:\:\mathrm{4096} \\ $$

Question Number 221618    Answers: 3   Comments: 0

solve for x 2^x +4^x =8^x

$${solve}\:{for}\:{x} \\ $$$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{8}^{{x}} \\ $$

Question Number 221669    Answers: 2   Comments: 3

Question Number 221585    Answers: 6   Comments: 1

solve for x ∈R (x^3 −6)^3 =x+6

$${solve}\:{for}\:{x}\:\in{R} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{6}\right)^{\mathrm{3}} ={x}+\mathrm{6} \\ $$

Question Number 221544    Answers: 1   Comments: 0

((x−1))^(1/(x+1)) = ((x+1))^(1/(x−1)) , x real

$$\:\:\sqrt[{{x}+\mathrm{1}}]{{x}−\mathrm{1}}\:=\:\sqrt[{{x}−\mathrm{1}}]{{x}+\mathrm{1}}\:,\:{x}\:{real}\: \\ $$

Question Number 221504    Answers: 1   Comments: 0

Find x if (x^4 /4^x )=(4^x /x^4 ) . x∈R

$${Find}\:{x}\:{if}\:\:\:\:\frac{{x}^{\mathrm{4}} }{\mathrm{4}^{{x}} }=\frac{\mathrm{4}^{{x}} }{{x}^{\mathrm{4}} }\:\:.\:\:\:{x}\in\mathbb{R} \\ $$

Question Number 221501    Answers: 3   Comments: 0

solve for x: (√(a−(√(a+x))))+(√(a+(√(a−x))))=2x it′s possible to solve for a but x seems impossible to me

$${solve}\:{for}\:\mathrm{x}: \\ $$$$\sqrt{\mathrm{a}−\sqrt{\mathrm{a}+\mathrm{x}}}+\sqrt{\mathrm{a}+\sqrt{\mathrm{a}−\mathrm{x}}}=\mathrm{2x} \\ $$$${it}'{s}\:{possible}\:{to}\:{solve}\:{for}\:\mathrm{a}\:{but}\:\mathrm{x}\:{seems} \\ $$$${impossible}\:{to}\:{me} \\ $$

Question Number 221430    Answers: 1   Comments: 0

Question Number 221399    Answers: 0   Comments: 0

let a,b ≥ 0 and a + b + ab = 3 show that; ((38)/(55)) ≤ (1/(a^2 + 2)) + (1/(b^2 +2)) + (1/(a^2 + b^2 + 1)) ≤ 1 , ((463)/(812)) ≤ (1/(a^3 + 2)) + (1/(b^3 + 2)) + (1/(a^3 + b^3 + 1)) ≤ 1 , ((193)/(308)) ≤ (1/(a^2 + 2)) + (1/(b^3 + 2)) + (1/(a^3 + b^2 + 1)) ≤1 , and ((463)/(812)) ≤ (1/(a^2 + 2)) + (1/(b^3 + 2)) + (1/(a^2 + b^3 + 1)) ≤ ((11)/(10))

$$ \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{let}}\:\boldsymbol{{a}},\boldsymbol{{b}}\:\geqslant\:\mathrm{0}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{a}}\:+\:\boldsymbol{{b}}\:+\:\boldsymbol{{ab}}\:=\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}; \\ $$$$\:\:\frac{\mathrm{38}}{\mathrm{55}}\:\leqslant\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{2}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{b}}^{\mathrm{2}} \:+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{2}} \:+\:\boldsymbol{{b}}^{\mathrm{2}} \:+\:\mathrm{1}}\:\leqslant\:\mathrm{1}\:\:,\:\:\:\:\:\:\: \\ $$$$\:\:\frac{\mathrm{463}}{\mathrm{812}}\:\leqslant\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{3}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{b}}^{\mathrm{3}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{3}} \:+\:\boldsymbol{{b}}^{\mathrm{3}} \:+\:\mathrm{1}}\:\leqslant\:\mathrm{1}\:\:\:,\:\:\:\:\:\:\:\: \\ $$$$\:\:\frac{\mathrm{193}}{\mathrm{308}}\:\leqslant\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{2}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{b}}^{\mathrm{3}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{3}} \:+\:\boldsymbol{{b}}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:\:\leqslant\mathrm{1}\:\:,\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}} \\ $$$$\:\:\frac{\mathrm{463}}{\mathrm{812}}\:\leqslant\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{2}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{b}}^{\mathrm{3}} \:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{a}}^{\mathrm{2}} \:+\:\boldsymbol{{b}}^{\mathrm{3}} \:+\:\mathrm{1}}\:\leqslant\:\frac{\mathrm{11}}{\mathrm{10}}\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 221393    Answers: 0   Comments: 0

a, b, c are complex number and ∣a∣ = ∣b∣=∣c∣= 1 and (a^2 /(bc))+(b^2 /(ac)) +(c^2 /(ab)) = −1 where ∣.∣ is modules function then ∣a+b+c∣ can be (A) 0 (B) 1 (C) (3/2) (D) 2

$$\:\:\:\:\:{a},\:{b},\:{c}\:{are}\:{complex}\:{number}\:{and}\: \\ $$$$\:\:\:\mid{a}\mid\:=\:\mid{b}\mid=\mid{c}\mid=\:\mathrm{1}\:{and}\:\:\frac{{a}^{\mathrm{2}} }{{bc}}+\frac{{b}^{\mathrm{2}} }{{ac}}\:+\frac{{c}^{\mathrm{2}} }{{ab}}\:=\:−\mathrm{1} \\ $$$$\:\:\:\:{where}\:\mid.\mid\:{is}\:\:{modules}\:{function} \\ $$$${then}\:\mid{a}+{b}+{c}\mid\:{can}\:{be}\: \\ $$$$\left({A}\right)\:\mathrm{0}\:\:\:\:\:\:\:\left({B}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\left({C}\right)\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\left({D}\right)\:\mathrm{2} \\ $$

Question Number 221377    Answers: 2   Comments: 0

Find: Ω =lim_(n→∞) (2 ((10))^(1/n) − 1)^n = ?

$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}\:\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{10}}\:−\:\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:=\:? \\ $$

Question Number 221359    Answers: 2   Comments: 0

Question Number 221322    Answers: 3   Comments: 0

Solve for x x^(1/a) +(√x^((1/a)+(1/b)) )=x^(1/b)

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\frac{\mathrm{1}}{{a}}} +\sqrt{{x}^{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}} }={x}^{\frac{\mathrm{1}}{{b}}} \\ $$

Question Number 221321    Answers: 0   Comments: 0

if 0<x<y<e^2 then y^(√x) +x^2 +6xy+18y^2 +(8/x)+((16)/(9x^2 y^2 ))>2+x^(√y)

$${if}\:\mathrm{0}<{x}<{y}<{e}^{\mathrm{2}} \:{then} \\ $$$${y}^{\sqrt{{x}}} +{x}^{\mathrm{2}} +\mathrm{6}{xy}+\mathrm{18}{y}^{\mathrm{2}} +\frac{\mathrm{8}}{{x}}+\frac{\mathrm{16}}{\mathrm{9}{x}^{\mathrm{2}} {y}^{\mathrm{2}} }>\mathrm{2}+{x}^{\sqrt{{y}}} \\ $$

Question Number 221262    Answers: 2   Comments: 1

if a, b, c, > 0 , show that; (a^5 /b^2 ) + (b/c) + (c^3 /a^2 ) > 2a

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:{a},\:{b},\:{c},\:>\:\mathrm{0}\:\:,\:\mathrm{show}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{5}} }{{b}^{\mathrm{2}} }\:+\:\frac{{b}}{{c}}\:+\:\frac{{c}^{\mathrm{3}} }{{a}^{\mathrm{2}} }\:>\:\mathrm{2}{a} \\ $$$$ \\ $$

Question Number 221245    Answers: 1   Comments: 0

Which is greater ((√7)+1) or ((√3)+(√5))?????

$${Which}\:{is}\:{greater}\:\:\:\:\:\:\:\left(\sqrt{\mathrm{7}}+\mathrm{1}\right)\:\:{or}\:\:\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{5}}\right)????? \\ $$

Question Number 221239    Answers: 1   Comments: 0

2^x =4^y =8^z and ((1/(2x))+1(1/(4y))+(1/(6z)))=((24)/7) z=??

$$\mathrm{2}^{{x}} =\mathrm{4}^{{y}} =\mathrm{8}^{{z}} \:\:{and}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}}+\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}{y}}+\frac{\mathrm{1}}{\mathrm{6}{z}}\right)=\frac{\mathrm{24}}{\mathrm{7}}\:\:\: \\ $$$${z}=?? \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com