Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 2

Question Number 224225    Answers: 0   Comments: 0

Question Number 224150    Answers: 0   Comments: 2

Question Number 224146    Answers: 1   Comments: 0

a = 12^(223) ∙ 7^(56) + 19^(25) what is the last digit of the number?

$$\boldsymbol{\mathrm{a}}\:=\:\mathrm{12}^{\mathrm{223}} \:\centerdot\:\mathrm{7}^{\mathrm{56}} \:+\:\mathrm{19}^{\mathrm{25}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}? \\ $$

Question Number 224095    Answers: 1   Comments: 2

how to prove that x + 9 = x is not has solution because (x + 9)^2 = x^2 x^2 + 18x + 81 = x^2 18x = −81 x = − ((81)/(18)) = −(9/2)

$${how}\:{to}\:{prove}\:{that}\:\:{x}\:+\:\mathrm{9}\:=\:{x}\:{is}\:{not}\:{has}\:{solution} \\ $$$${because}\: \\ $$$$\left({x}\:+\:\mathrm{9}\right)^{\mathrm{2}} \:=\:{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{18}{x}\:+\:\mathrm{81}\:=\:{x}^{\mathrm{2}} \\ $$$$\mathrm{18}{x}\:=\:−\mathrm{81} \\ $$$${x}\:=\:−\:\frac{\mathrm{81}}{\mathrm{18}}\:=\:−\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Question Number 224080    Answers: 0   Comments: 0

Use choleski′s method to solve the following system of equation 4x_1 −2x_2 +2x_3 =6 4x_1 −3x_2 −2x_3 =−8 2x_1 +3x_2 −x_3 =5

$$\boldsymbol{{Use}}\:\boldsymbol{{choleski}}'\boldsymbol{{s}}\:\boldsymbol{{method}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{system}} \\ $$$$\boldsymbol{{of}}\:\boldsymbol{{equation}} \\ $$$$\mathrm{4}\boldsymbol{{x}}_{\mathrm{1}} −\mathrm{2}\boldsymbol{{x}}_{\mathrm{2}} +\mathrm{2}\boldsymbol{{x}}_{\mathrm{3}} =\mathrm{6} \\ $$$$\mathrm{4}\boldsymbol{{x}}_{\mathrm{1}} −\mathrm{3}\boldsymbol{{x}}_{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}_{\mathrm{3}} =−\mathrm{8} \\ $$$$\mathrm{2}\boldsymbol{{x}}_{\mathrm{1}} +\mathrm{3}\boldsymbol{{x}}_{\mathrm{2}} −\boldsymbol{{x}}_{\mathrm{3}} =\mathrm{5} \\ $$

Question Number 224079    Answers: 0   Comments: 0

For the given function f(x),let x_0 =0,x_1 =0.6 and x_2 =0.9. construct the lagrange interpolating polynomials of degree. (1) at most 1 (2)at most 2 to approximate f(0.45) if (a) f(x)=cosx (b) f(x)=(√(1+x)) (c) f(x)=In(1+x) (d) f(x)=tanx

$$\boldsymbol{{For}}\:\boldsymbol{{the}}\:\boldsymbol{{given}}\:\boldsymbol{{function}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right),\boldsymbol{{let}}\:\boldsymbol{{x}}_{\mathrm{0}} =\mathrm{0},\boldsymbol{{x}}_{\mathrm{1}} =\mathrm{0}.\mathrm{6} \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{x}}_{\mathrm{2}} =\mathrm{0}.\mathrm{9}.\:\boldsymbol{{construct}}\:\boldsymbol{{the}}\:\boldsymbol{{lagrange}}\:\boldsymbol{{interpolating}} \\ $$$$\boldsymbol{{polynomials}}\:\boldsymbol{{of}}\:\boldsymbol{{degree}}.\:\left(\mathrm{1}\right)\:\boldsymbol{{at}}\:\boldsymbol{{most}}\:\mathrm{1}\:\left(\mathrm{2}\right)\boldsymbol{{at}}\:\boldsymbol{{most}}\:\mathrm{2} \\ $$$$\boldsymbol{{to}}\:\boldsymbol{{approximate}}\:\boldsymbol{{f}}\left(\mathrm{0}.\mathrm{45}\right)\:\boldsymbol{{if}}\: \\ $$$$\left(\boldsymbol{{a}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{cosx}}\:\:\left(\boldsymbol{{b}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\sqrt{\mathrm{1}+\boldsymbol{{x}}}\:\left(\boldsymbol{{c}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{In}}\left(\mathrm{1}+\boldsymbol{{x}}\right) \\ $$$$\left(\boldsymbol{{d}}\right)\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{tanx}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 224078    Answers: 0   Comments: 0

Evaluate ∫^(𝛑/2) _0 sinxdx with h=(𝛑/(12)),correct to 5 decimal places,using (1)Trapezoidal rule (2)Newton−Cotes formula for n=4 (3)Simpson 3/8 −rule then find the truncation error in each case.

$$\boldsymbol{{Evaluate}}\:\underset{\mathrm{0}} {\int}^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{sinxdx}}\:\boldsymbol{{with}}\:\boldsymbol{{h}}=\frac{\boldsymbol{\pi}}{\mathrm{12}},\boldsymbol{{correct}}\:\boldsymbol{{to}} \\ $$$$\mathrm{5}\:\boldsymbol{{decimal}}\:\boldsymbol{{places}},\boldsymbol{{using}} \\ $$$$\left(\mathrm{1}\right)\boldsymbol{{Trapezoidal}}\:\boldsymbol{{rule}} \\ $$$$\left(\mathrm{2}\right)\boldsymbol{{Newton}}−\boldsymbol{{Cotes}}\:\boldsymbol{{formula}}\:\boldsymbol{{for}}\:\boldsymbol{{n}}=\mathrm{4} \\ $$$$\left(\mathrm{3}\right)\boldsymbol{{Simpson}}\:\mathrm{3}/\mathrm{8}\:−\boldsymbol{{rule}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{truncation}}\:\boldsymbol{{error}}\:\boldsymbol{{in}}\:\boldsymbol{{each}}\:\boldsymbol{{case}}. \\ $$

Question Number 224076    Answers: 1   Comments: 0

D=(√((m−(n^2 /4))^2 +(e^m −n)^2 ))+(n^2 /4)(m,n∈R),D_(min) =?

$$ \\ $$$${D}=\sqrt{\left({m}−\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} +\left({e}^{{m}} −{n}\right)^{\mathrm{2}} }+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({m},{n}\in{R}\right),{D}_{\mathrm{min}} =? \\ $$

Question Number 224069    Answers: 1   Comments: 0

If x^(32) =2^x then solve for x.

$$\mathrm{If}\:\mathrm{x}^{\mathrm{32}} =\mathrm{2}^{\mathrm{x}} \:\mathrm{then}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{x}. \\ $$

Question Number 224065    Answers: 0   Comments: 1

Find x, (√3)x−3x(√(1−x^2 ))=1 .

$$\mathrm{Find}\:\mathrm{x},\:\sqrt{\mathrm{3}}\mathrm{x}−\mathrm{3x}\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }=\mathrm{1}\:. \\ $$

Question Number 224042    Answers: 1   Comments: 0

Question Number 224041    Answers: 1   Comments: 0

Question Number 224034    Answers: 3   Comments: 0

x^3 +(1/x^3 )=18(√3) .Find the value of x.

$$\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{18}\sqrt{\mathrm{3}}\:.\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$

Question Number 224030    Answers: 1   Comments: 0

Question Number 224029    Answers: 2   Comments: 0

Question Number 224028    Answers: 1   Comments: 0

Question Number 224018    Answers: 2   Comments: 0

x ≠ y λ ≥ 1 { ((x + λ^2 = (y − λ)^2 )),((y + λ^2 = (x − λ)^2 )) :} Find: (((x^2 + y^2 )/(4λ^2 − 1)))^(2025) = ?

$$\mathrm{x}\:\neq\:\mathrm{y} \\ $$$$\lambda\:\geqslant\:\mathrm{1} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{y}\:−\:\lambda\right)^{\mathrm{2}} }\\{\mathrm{y}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{x}\:−\:\lambda\right)^{\mathrm{2}} }\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} \:−\:\mathrm{1}}\right)^{\mathrm{2025}} =\:\:? \\ $$

Question Number 224017    Answers: 0   Comments: 0

x,y,z>0 xy+yz+zx+2xyz=1 prove that: (√(1−x^2 )) + (√(1−y^2 )) + (√(1−z^2 )) ≤ ((3 (√3))/2)

$$\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0} \\ $$$$\mathrm{xy}+\mathrm{yz}+\mathrm{zx}+\mathrm{2xyz}=\mathrm{1} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{z}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{3}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 224016    Answers: 0   Comments: 0

a,b,c>0 a+b+c+2=abc prove that: (1/( (√(7+a)))) + (1/( (√(7+b)))) + (1/( (√(7+c)))) ≤ 1

$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{a}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{b}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{c}}}\:\leqslant\:\mathrm{1} \\ $$

Question Number 224015    Answers: 0   Comments: 0

a,b,c>0 a+b+c+2=abc prove that: (√a) + (√b) + (√c) ≤ (3/2) (√(abc))

$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\:+\:\sqrt{\mathrm{c}}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt{\mathrm{abc}} \\ $$

Question Number 223995    Answers: 1   Comments: 0

Question Number 223965    Answers: 2   Comments: 0

Question Number 223964    Answers: 3   Comments: 0

Question Number 223858    Answers: 1   Comments: 0

Question Number 223823    Answers: 3   Comments: 0

(√(4x+1))+(√(3x−2))=1 x=?

$$\sqrt{\mathrm{4}{x}+\mathrm{1}}+\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 223822    Answers: 2   Comments: 0

(((4/3))^(4/3) ) Rewrite in simplest radical form

$$\left(\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \right) \\ $$$$\:{Rewrite}\:{in}\:{simplest}\:{radical}\:{form} \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com