Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 1

Question Number 217872    Answers: 0   Comments: 0

a , b , c > 0 ab + ac + bc = 1 Prove that: (√(a^3 + a)) + (√(b^3 + b)) + (√(c^3 + c)) ≥ 2 (√(a + b + c))

$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:>\:\mathrm{0} \\ $$$$\mathrm{ab}\:+\:\mathrm{ac}\:+\:\mathrm{bc}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{a}}\:\:+\:\:\sqrt{\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{b}}\:\:+\:\:\sqrt{\mathrm{c}^{\mathrm{3}} \:+\:\mathrm{c}}\:\:\geqslant\:\mathrm{2}\:\sqrt{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$

Question Number 217871    Answers: 0   Comments: 0

n ≥ 2 Prove that: Π_(k=1) ^n tg [ (π/3) (1 + (3^k /(3^n − 1)))] = Π_(k=1) ^n ctg [ (π/3) (1 − (3^k /(3^n − 1)))]

$$\mathrm{n}\:\geqslant\:\mathrm{2} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\:\mathrm{tg}\:\left[\:\frac{\pi}{\mathrm{3}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{3}^{\boldsymbol{\mathrm{k}}} }{\mathrm{3}^{\boldsymbol{\mathrm{n}}} \:−\:\mathrm{1}}\right)\right]\:=\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\:\mathrm{ctg}\:\left[\:\frac{\pi}{\mathrm{3}}\:\left(\mathrm{1}\:−\:\frac{\mathrm{3}^{\boldsymbol{\mathrm{k}}} }{\mathrm{3}^{\boldsymbol{\mathrm{n}}} \:−\:\mathrm{1}}\right)\right] \\ $$

Question Number 217858    Answers: 0   Comments: 0

Question Number 217857    Answers: 1   Comments: 0

Prove that: ((cos20°))^(1/3) + ((cos80°))^(1/3) + ((cos160°))^(1/3) = (((3 ∙ (9)^(1/3) − 6)/2))^(1/3)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{cos20}°}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{cos80}°}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{cos160}°}\:=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}\:\centerdot\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\:−\:\mathrm{6}}{\mathrm{2}}} \\ $$

Question Number 217849    Answers: 0   Comments: 0

Question Number 217843    Answers: 0   Comments: 5

Question Number 217822    Answers: 1   Comments: 0

Question Number 217802    Answers: 1   Comments: 1

Question Number 217789    Answers: 0   Comments: 4

Question Number 217766    Answers: 3   Comments: 0

Solve for x & y (1/x)+(1/y)=5 (1/x^2 )+(1/y^2 )=13

$${Solve}\:{for}\:{x}\:\&\:{y} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\mathrm{13} \\ $$

Question Number 217764    Answers: 1   Comments: 0

Let a, b, c be distinct real numbers such that (a/(b−c))+(b/(c−a))+(c/(a−b))=0 then prove that (a/((b−c)^2 ))+(b/((c−a)^2 ))+(c/((a−b)^2 ))=0

$$ \\ $$$$\mathrm{Let}\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{be}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\frac{{a}}{{b}−{c}}+\frac{{b}}{{c}−{a}}+\frac{{c}}{{a}−{b}}=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{a}}{\left({b}−{c}\right)^{\mathrm{2}} }+\frac{{b}}{\left({c}−{a}\right)^{\mathrm{2}} }+\frac{{c}}{\left({a}−{b}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 217735    Answers: 1   Comments: 1

a + b + c= abc a^2 + b^2 + c^2 = 49 ab+bc+ca=? . .

$$\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}=\:\mathrm{abc} \\ $$$$\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:=\:\mathrm{49}\: \\ $$$$\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=?\:\:\:.\:\:\:\:\:\:\:\:\:\:\:.\:\:\:\:\:\:\:\: \\ $$

Question Number 217733    Answers: 3   Comments: 0

Question Number 217732    Answers: 2   Comments: 1

{ ((x+y=xy)),((x^2 +y^2 =25)) :}; x^4 +y^4 =?

$$\begin{cases}{{x}+{y}={xy}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{25}}\end{cases};\:\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =? \\ $$

Question Number 217730    Answers: 3   Comments: 0

x+(1/x)=3 ; x^5 +(1/x^5 )=?

$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:;\:{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=? \\ $$

Question Number 217690    Answers: 1   Comments: 3

Question Number 217664    Answers: 1   Comments: 0

If f(x) = (√(2x + 3)) prove that: f ′(x) = (1/( (√(2x + 3))))

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{2x}\:+\:\mathrm{3}} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2x}\:+\:\mathrm{3}}}\: \\ $$

Question Number 217660    Answers: 1   Comments: 0

f(x) + f(y)=f(x+y)+xy f(x)=?

$$\:{f}\left({x}\right)\:+\:{f}\left({y}\right)={f}\left({x}+{y}\right)+{xy}\: \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 217659    Answers: 3   Comments: 0

x+y=7 ∧ x^3 +y^3 =133; x,y=?

$${x}+{y}=\mathrm{7}\:\wedge\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{133};\:{x},{y}=? \\ $$

Question Number 217643    Answers: 2   Comments: 0

a^(1/3) +b^(1/3) +c^(1/3) =(1/(3^(1/3) −2^(1/3) )) b+c−a=?

$$\:{a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} +{c}^{\frac{\mathrm{1}}{\mathrm{3}}} =\frac{\mathrm{1}}{\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$\:\:{b}+{c}−{a}=? \\ $$

Question Number 217579    Answers: 0   Comments: 4

f : R → R f(f(x)) = x^2 − x + 1 f(x) = ? Altered Question# 217541

$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$$$\mathrm{Altered}\:\mathrm{Question}#\:\mathrm{217541} \\ $$

Question Number 217541    Answers: 1   Comments: 0

f : R → R f(f(x)) = x^2 − x + 1 f(0) = ?

$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)\:=\:? \\ $$

Question Number 217535    Answers: 2   Comments: 0

A two-digit number is such that the sum of its digits is 10. When the digits are reversed, the new number is 28 less than twice the original number. Find the original number.

$$\mathrm{A}\:\mathrm{two}-\mathrm{digit}\:\mathrm{number}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{10}.\:\mathrm{When} \\ $$$$\mathrm{the}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{reversed},\:\mathrm{the}\:\mathrm{new}\:\mathrm{number} \\ $$$$\:\mathrm{is}\:\mathrm{28}\:\mathrm{less}\:\mathrm{than}\:\mathrm{twice}\:\mathrm{the}\:\:\mathrm{original}\:\mathrm{number}. \\ $$$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{original}\:\mathrm{number}. \\ $$

Question Number 217482    Answers: 0   Comments: 0

( n(√((n+1))) +(n+1)(√n) )^n +( n(√((n+1))) −(n+1)(√n) )^n =n^2 (n+1)(n+3)

$$\left(\:{n}\sqrt{\left({n}+\mathrm{1}\right)}\:+\left({n}+\mathrm{1}\right)\sqrt{{n}}\:\:\right)^{{n}} +\left(\:{n}\sqrt{\left({n}+\mathrm{1}\right)}\:−\left({n}+\mathrm{1}\right)\sqrt{{n}}\:\:\right)^{{n}} ={n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right) \\ $$

Question Number 217448    Answers: 3   Comments: 2

Solve for x: (1+(√2) )^x +(1−(√2) )^x =14

$${Solve}\:{for}\:{x}: \\ $$$$\left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right)^{{x}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\:\right)^{{x}} =\mathrm{14} \\ $$

Question Number 217424    Answers: 2   Comments: 0

The angle of elevation of the top of a building 24 m high is observed from the top and from the bottom of a vertical ladder, and found to be 45° and 60° respectively. Find the height of the ladder.

The angle of elevation of the top of a building 24 m high is observed from the top and from the bottom of a vertical ladder, and found to be 45° and 60° respectively. Find the height of the ladder.

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com