Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 115642 by 24224 Opiyo Kamuki last updated on 27/Sep/20

A vertical post of height h m rises from a plane which   slopes down towards the South at an angle  α to the horizontal. Prove that the length  of its shadow when the sun is S𝛉W    at an elevation β is    ((h(√((1+tan^2 α cos^2 θ) )))/(tanβ + tanα cos θ))m

$${A}\:{vertical}\:{post}\:{of}\:{height}\:{h}\:{m}\:{rises}\:{from}\:{a}\:{plane}\:{which}\: \\ $$$${slopes}\:{down}\:{towards}\:{the}\:{South}\:{at}\:{an}\:{angle} \\ $$$$\alpha\:{to}\:{the}\:{horizontal}.\:{Prove}\:{that}\:{the}\:{length} \\ $$$${of}\:{its}\:{shadow}\:{when}\:{the}\:{sun}\:{is}\:\boldsymbol{{S}\theta{W}}\:\: \\ $$$${at}\:{an}\:{elevation}\:\beta\:{is} \\ $$$$ \\ $$$$\frac{{h}\sqrt{\left(\mathrm{1}+{tan}^{\mathrm{2}} \alpha\:{cos}^{\mathrm{2}} \theta\right)\:}}{{tan}\beta\:+\:{tan}\alpha\:\mathrm{cos}\:\theta}{m} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com