Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 110782 by Aina Samuel Temidayo last updated on 30/Aug/20

A triangle has area 15 and  circumradius 12. Find the product of  its heights.

$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{area}\:\mathrm{15}\:\mathrm{and} \\ $$$$\mathrm{circumradius}\:\mathrm{12}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of} \\ $$$$\mathrm{its}\:\mathrm{heights}. \\ $$

Answered by som(math1967) last updated on 30/Aug/20

(1/2)bcsinA=15  bc×(a/(24))=30 [∵sinA=(a/(2R))]  abc=30×24  let heights are h_1 ,h_2 ,h_3   ∴(1/2)×h_1 ×a=(1/2)×bc×sinA  (1/2)×h_2 ×b=(1/2)×casinB  (1/2)×h_3 ×c=(1/2)×absinC  ∴h_1 ×h_2 ×h_3 =abcsinAsinBsinC  =abc×(a/(24))×(b/(24))×(c/(24))  =((a^2 b^2 c^2 )/(24×24×24))  =((30×30×24×24)/(24×24×24))  =((900)/(24))=((75)/2)

$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{bcsinA}=\mathrm{15} \\ $$$$\mathrm{bc}×\frac{\mathrm{a}}{\mathrm{24}}=\mathrm{30}\:\left[\because\mathrm{sinA}=\frac{\mathrm{a}}{\mathrm{2R}}\right] \\ $$$$\mathrm{abc}=\mathrm{30}×\mathrm{24} \\ $$$$\mathrm{let}\:\mathrm{heights}\:\mathrm{are}\:\mathrm{h}_{\mathrm{1}} ,\mathrm{h}_{\mathrm{2}} ,\mathrm{h}_{\mathrm{3}} \\ $$$$\therefore\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{h}_{\mathrm{1}} ×\mathrm{a}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{bc}×\mathrm{sinA} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{h}_{\mathrm{2}} ×\mathrm{b}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{casinB} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{h}_{\mathrm{3}} ×\mathrm{c}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{absinC} \\ $$$$\therefore\mathrm{h}_{\mathrm{1}} ×\mathrm{h}_{\mathrm{2}} ×\mathrm{h}_{\mathrm{3}} =\mathrm{abcsinAsinBsinC} \\ $$$$=\mathrm{abc}×\frac{\mathrm{a}}{\mathrm{24}}×\frac{\mathrm{b}}{\mathrm{24}}×\frac{\mathrm{c}}{\mathrm{24}} \\ $$$$=\frac{\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} }{\mathrm{24}×\mathrm{24}×\mathrm{24}} \\ $$$$=\frac{\mathrm{30}×\mathrm{30}×\mathrm{24}×\mathrm{24}}{\mathrm{24}×\mathrm{24}×\mathrm{24}} \\ $$$$=\frac{\mathrm{900}}{\mathrm{24}}=\frac{\mathrm{75}}{\mathrm{2}} \\ $$

Answered by mr W last updated on 30/Aug/20

R=((abc)/(4A)) ⇒abc=4AR    A=(1/2)ah_A   A=(1/2)bh_B   A=(1/2)ch_C   ⇒h_A h_B h_C =((8A^3 )/(abc))=((8A^3 )/(4AR))=((2A^2 )/R)=((2×15^2 )/(12))=((75)/2)

$${R}=\frac{{abc}}{\mathrm{4}{A}}\:\Rightarrow{abc}=\mathrm{4}{AR} \\ $$$$ \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}{ah}_{{A}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}{bh}_{{B}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}{ch}_{{C}} \\ $$$$\Rightarrow{h}_{{A}} {h}_{{B}} {h}_{{C}} =\frac{\mathrm{8}{A}^{\mathrm{3}} }{{abc}}=\frac{\mathrm{8}{A}^{\mathrm{3}} }{\mathrm{4}{AR}}=\frac{\mathrm{2}{A}^{\mathrm{2}} }{{R}}=\frac{\mathrm{2}×\mathrm{15}^{\mathrm{2}} }{\mathrm{12}}=\frac{\mathrm{75}}{\mathrm{2}} \\ $$

Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com