Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 178561 by Huy last updated on 18/Oct/22

A sequence is given by         { ((u_1 =1)),((u_(n+1) =(√(u_n ^2 +1))−u_n )) :}  (n∈N, n≥1)  Find lim u_n ?

$${A}\:{sequence}\:{is}\:{given}\:{by}\: \\ $$$$\:\:\:\:\:\begin{cases}{{u}_{\mathrm{1}} =\mathrm{1}}\\{{u}_{{n}+\mathrm{1}} =\sqrt{{u}_{{n}} ^{\mathrm{2}} +\mathrm{1}}−{u}_{{n}} }\end{cases}\:\:\left({n}\in\mathbb{N},\:{n}\geqslant\mathrm{1}\right) \\ $$$${Find}\:{lim}\:{u}_{{n}} ? \\ $$

Answered by mr W last updated on 18/Oct/22

(u_(n+1) /u_n )=(√(1+((1/u_n ))^2 ))−1>0  L=(√(L^2 +1))−L  3L^2 =1  ⇒L=(1/( (√3)))=lim_(n→∞) u_n

$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }=\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}}{{u}_{{n}} }\right)^{\mathrm{2}} }−\mathrm{1}>\mathrm{0} \\ $$$${L}=\sqrt{{L}^{\mathrm{2}} +\mathrm{1}}−{L} \\ $$$$\mathrm{3}{L}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{L}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{u}_{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com