Question Number 217425 by Jubr last updated on 13/Mar/25 | ||
![]() | ||
A restaurant offers 5 choices of appetizer, 10 choices of main meal and 4 choices of dessert. A customer can choose to eat just one course, or two different courses, or all three courses. Assuming all choices are available, how many different possible meals does the restaurant offer? | ||
Answered by mr W last updated on 13/Mar/25 | ||
![]() | ||
$${just}\:{one}\:{course}: \\ $$$$\mathrm{5}+\mathrm{10}+\mathrm{4}=\mathrm{19}\:{possibilities} \\ $$$$\mathrm{2}\:{different}\:{courses}: \\ $$$$\mathrm{5}×\mathrm{10}+\mathrm{5}×\mathrm{4}+\mathrm{4}×\mathrm{10}=\mathrm{110}\:{possibilities} \\ $$$$\mathrm{3}\:{different}\:{courses}: \\ $$$$\mathrm{5}×\mathrm{10}×\mathrm{4}=\mathrm{200}\:{possibilities} \\ $$$${totally}:\:\mathrm{19}+\mathrm{110}+\mathrm{200}=\mathrm{329}\:{possibilities} \\ $$ | ||
Commented by Jubr last updated on 14/Mar/25 | ||
![]() | ||
$${Thanks}\:{sir}. \\ $$$${I}\:{appreciate}. \\ $$ | ||
Answered by MathematicalUser2357 last updated on 14/Mar/25 | ||
![]() | ||
$$\: \cancel{\underbrace{ }} \\ $$ | ||
Commented by mr W last updated on 14/Mar/25 | ||
![]() | ||
$${how}\:{did}\:{you}\:{get}? \\ $$ | ||