Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 84651 by ajfour last updated on 14/Mar/20

A person stands in the diagonal  produced of the square base of a  church tower, at a distance 2a  from it, and observes the angle  of elevation of each of the two  outer corners of the top of the  tower to be 30°, while that of the  nearest corner is 45°. Find the  breadth of the tower.

$${A}\:{person}\:{stands}\:{in}\:{the}\:{diagonal} \\ $$$${produced}\:{of}\:{the}\:{square}\:{base}\:{of}\:{a} \\ $$$${church}\:{tower},\:{at}\:{a}\:{distance}\:\mathrm{2}{a} \\ $$$${from}\:{it},\:{and}\:{observes}\:{the}\:{angle} \\ $$$${of}\:{elevation}\:{of}\:{each}\:{of}\:{the}\:{two} \\ $$$${outer}\:{corners}\:{of}\:{the}\:{top}\:{of}\:{the} \\ $$$${tower}\:{to}\:{be}\:\mathrm{30}°,\:{while}\:{that}\:{of}\:{the} \\ $$$${nearest}\:{corner}\:{is}\:\mathrm{45}°.\:{Find}\:{the} \\ $$$${breadth}\:{of}\:{the}\:{tower}. \\ $$

Answered by mr W last updated on 14/Mar/20

b=breadth of tower  h=height of tower  tan 45°=(h/(2a)) ⇒h=2a  h=(√(((b/(√2)))^2 +((b/(√2))+2a)^2 ))tan 30°  2a=(√(((b/(√2)))^2 +((b/(√2))+2a)^2 ))×(1/(√3))  12a^2 =2((b/(√2)))^2 +4a((b/(√2)))+4a^2   ((b/(√2)))^2 +2a((b/(√2)))−4a^2 =0  ((b/(√2))+a)^2 =5a^2   (b/(√2))+a=(√5)a  ⇒b=((√(10))−(√2))a≈1.748a

$${b}={breadth}\:{of}\:{tower} \\ $$$${h}={height}\:{of}\:{tower} \\ $$$$\mathrm{tan}\:\mathrm{45}°=\frac{{h}}{\mathrm{2}{a}}\:\Rightarrow{h}=\mathrm{2}{a} \\ $$$${h}=\sqrt{\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\frac{{b}}{\sqrt{\mathrm{2}}}+\mathrm{2}{a}\right)^{\mathrm{2}} }\mathrm{tan}\:\mathrm{30}° \\ $$$$\mathrm{2}{a}=\sqrt{\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\frac{{b}}{\sqrt{\mathrm{2}}}+\mathrm{2}{a}\right)^{\mathrm{2}} }×\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\mathrm{12}{a}^{\mathrm{2}} =\mathrm{2}\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\mathrm{4}{a}\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)+\mathrm{4}{a}^{\mathrm{2}} \\ $$$$\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\mathrm{2}{a}\left(\frac{{b}}{\sqrt{\mathrm{2}}}\right)−\mathrm{4}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\frac{{b}}{\sqrt{\mathrm{2}}}+{a}\right)^{\mathrm{2}} =\mathrm{5}{a}^{\mathrm{2}} \\ $$$$\frac{{b}}{\sqrt{\mathrm{2}}}+{a}=\sqrt{\mathrm{5}}{a} \\ $$$$\Rightarrow{b}=\left(\sqrt{\mathrm{10}}−\sqrt{\mathrm{2}}\right){a}\approx\mathrm{1}.\mathrm{748}{a} \\ $$

Commented by ajfour last updated on 14/Mar/20

correct sir, and well presented,  thanks.

$${correct}\:{sir},\:{and}\:{well}\:{presented}, \\ $$$${thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com