Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 191868 by Spillover last updated on 02/May/23

A particle of mass m moves under the central  repulsive force ((mb)/r^3 )  and is initially moving  at a distance ′a′  from the origin of  a force  with velocity  ′v′ at right angle to  ′a′.  show that          rcos pθ=a  where p =(b/(a^2 v^2 ))+1.

$${A}\:{particle}\:{of}\:{mass}\:{m}\:{moves}\:{under}\:{the}\:{central} \\ $$$${repulsive}\:{force}\:\frac{{mb}}{{r}^{\mathrm{3}} }\:\:{and}\:{is}\:{initially}\:{moving} \\ $$$${at}\:{a}\:{distance}\:'{a}'\:\:{from}\:{the}\:{origin}\:{of}\:\:{a}\:{force} \\ $$$${with}\:{velocity}\:\:'{v}'\:{at}\:{right}\:{angle}\:{to}\:\:'{a}'. \\ $$$${show}\:{that}\:\:\: \\ $$$$\:\:\:\:\:{r}\mathrm{cos}\:{p}\theta={a}\:\:{where}\:{p}\:=\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }+\mathrm{1}. \\ $$$$ \\ $$

Answered by mr W last updated on 03/May/23

Commented by Spillover last updated on 29/Jun/23

thanks for the sketch

$${thanks}\:{for}\:{the}\:{sketch} \\ $$

Answered by Spillover last updated on 15/Jul/24

The presence of the central force implies that  the angular momentum L is conserved  F(r)=((mb)/r^3 )             L=mr^2 θ  Given initial condition  ■ initial distance from the origin r=a  ■ initial velocity v perpendicular to a is given                 L=mav  Total energy of the particle is conserved consist  K.E and effective P.E[V_(eff) (r)]  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  L=mav  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  V_(eff) (r)=(((mav)^2 )/(2mr^2 ))+((mb)/(2r^2 ))=((m(a^2 v^2 +b))/(2r^2 ))  from Radial equation of the motion  (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  The radial equation of the motion from  effective potential  m(d^2 r/dt^2 )=m(d^2 θ/dt^2 )=(L^2 /(mr^3 ))+((mb)/r^3 )  (d^2 r/dt^2 )=((a^2 v^2 +b)/r^3 )  from                   (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  u=(1/r)                     (du/dθ)=−(1/r)(dr/dθ)  (d^2 r/dt^2 )=(d/dθ)((dr/dθ).(dθ/dt))  (d^2 r/dt^2 )=(d/dθ)((dr/dθ)).((dθ/dt))^2 +(dr/dθ).(d^2 θ/dt^2 )  but          (d^2 θ/dt^2 )=0  ((d^2 r/dθ^2 )).(((av)/r^2 ))^2   solve d.e for u  (d^2 θ/dt^2 )+u=((a^2 v^2 +b)/(a^2 v^2 ))u^3   (d^2 θ/dt^2 )+u=(1+(b/(a^2 v^2 )))u^3   given the boundary condition  u=(1/r)     at θ=0  u(θ)=(1/a)cos (pθ)   where p=1+(b/(a^2 v^2 ))

$${The}\:{presence}\:{of}\:{the}\:{central}\:{force}\:{implies}\:{that} \\ $$$${the}\:{angular}\:{momentum}\:{L}\:{is}\:{conserved} \\ $$$${F}\left({r}\right)=\frac{{mb}}{{r}^{\mathrm{3}} }\:\:\:\:\:\:\:\:\:\:\:\:\:{L}={mr}^{\mathrm{2}} \theta \\ $$$${Given}\:{initial}\:{condition} \\ $$$$\blacksquare\:{initial}\:{distance}\:{from}\:{the}\:{origin}\:{r}={a} \\ $$$$\blacksquare\:{initial}\:{velocity}\:{v}\:{perpendicular}\:{to}\:{a}\:{is}\:{given} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{L}={mav} \\ $$$${Total}\:{energy}\:{of}\:{the}\:{particle}\:{is}\:{conserved}\:{consist} \\ $$$${K}.{E}\:{and}\:{effective}\:{P}.{E}\left[{V}_{{eff}} \left({r}\right)\right] \\ $$$${V}_{{eff}} \left({r}\right)=\frac{{L}^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${L}={mav} \\ $$$${V}_{{eff}} \left({r}\right)=\frac{{L}^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${V}_{{eff}} \left({r}\right)=\frac{\left({mav}\right)^{\mathrm{2}} }{\mathrm{2}{mr}^{\mathrm{2}} }+\frac{{mb}}{\mathrm{2}{r}^{\mathrm{2}} }=\frac{{m}\left({a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}\right)}{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$${from}\:{Radial}\:{equation}\:{of}\:{the}\:{motion} \\ $$$$\frac{{d}\theta}{{dt}}=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{2}} }=\frac{{av}}{{r}^{\mathrm{2}} } \\ $$$${The}\:{radial}\:{equation}\:{of}\:{the}\:{motion}\:{from} \\ $$$${effective}\:{potential} \\ $$$${m}\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }={m}\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{3}} }+\frac{{mb}}{{r}^{\mathrm{3}} } \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}}{{r}^{\mathrm{3}} } \\ $$$${from}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}\theta}{{dt}}=\frac{{L}^{\mathrm{2}} }{{mr}^{\mathrm{2}} }=\frac{{av}}{{r}^{\mathrm{2}} } \\ $$$${u}=\frac{\mathrm{1}}{{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{du}}{{d}\theta}=−\frac{\mathrm{1}}{{r}}\frac{{dr}}{{d}\theta} \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{d}}{{d}\theta}\left(\frac{{dr}}{{d}\theta}.\frac{{d}\theta}{{dt}}\right) \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{d}}{{d}\theta}\left(\frac{{dr}}{{d}\theta}\right).\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} +\frac{{dr}}{{d}\theta}.\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} } \\ $$$${but}\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\left(\frac{{d}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }\right).\left(\frac{{av}}{{r}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$${solve}\:{d}.{e}\:{for}\:{u} \\ $$$$\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+{u}=\frac{{a}^{\mathrm{2}} {v}^{\mathrm{2}} +{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }{u}^{\mathrm{3}} \\ $$$$\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+{u}=\left(\mathrm{1}+\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right){u}^{\mathrm{3}} \\ $$$${given}\:{the}\:{boundary}\:{condition} \\ $$$${u}=\frac{\mathrm{1}}{{r}}\:\:\:\:\:{at}\:\theta=\mathrm{0} \\ $$$${u}\left(\theta\right)=\frac{\mathrm{1}}{{a}}\mathrm{cos}\:\left({p}\theta\right)\:\:\:{where}\:{p}=\mathrm{1}+\frac{{b}}{{a}^{\mathrm{2}} {v}^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com