Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 63298 by Rio Michael last updated on 02/Jul/19

A particle P, moves on the curve with polar equation    r = e^(kθ)  , where (r,θ) are polar coordinates referred to a fixed  pole and k is a positive constant. Given that the radial velocity  of P is (k/r)  show that the transverse acceleration of th particle  is zero.

$${A}\:{particle}\:{P},\:{moves}\:{on}\:{the}\:{curve}\:{with}\:{polar}\:{equation}\:\: \\ $$$${r}\:=\:{e}^{{k}\theta} \:,\:{where}\:\left({r},\theta\right)\:{are}\:{polar}\:{coordinates}\:{referred}\:{to}\:{a}\:{fixed} \\ $$$${pole}\:{and}\:{k}\:{is}\:{a}\:{positive}\:{constant}.\:{Given}\:{that}\:{the}\:{radial}\:{velocity} \\ $$$${of}\:{P}\:{is}\:\frac{{k}}{{r}}\:\:{show}\:{that}\:{the}\:{transverse}\:{acceleration}\:{of}\:{th}\:{particle} \\ $$$${is}\:{zero}. \\ $$$$ \\ $$

Commented by Prithwish sen last updated on 02/Jul/19

r=e^(kθ)   taking log both sides  logr=kθ  (1/r) (dr/dθ) = k  ∵Radial vel.  (dr/dt) = (k/r)  ∴ (dθ/dt) = (dθ/dr).(dr/dt) = (1/r^2 ) ⇒ r^2 (dθ/dt) = 1  ∴ Transverse accl.  (1/r)(d/dt)(r^2 (dθ/dt)) = 0 proved  please check.

$$\mathrm{r}=\mathrm{e}^{\mathrm{k}\theta} \\ $$$$\mathrm{taking}\:\mathrm{log}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\mathrm{logr}=\mathrm{k}\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{r}}\:\frac{\mathrm{dr}}{\mathrm{d}\theta}\:=\:\mathrm{k} \\ $$$$\because\mathrm{Radial}\:\mathrm{vel}. \\ $$$$\frac{\mathrm{dr}}{\mathrm{dt}}\:=\:\frac{\mathrm{k}}{\mathrm{r}} \\ $$$$\therefore\:\frac{\mathrm{d}\theta}{\mathrm{dt}}\:=\:\frac{\mathrm{d}\theta}{\mathrm{dr}}.\frac{\mathrm{dr}}{\mathrm{dt}}\:=\:\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{r}^{\mathrm{2}} \frac{\mathrm{d}\theta}{\mathrm{dt}}\:=\:\mathrm{1} \\ $$$$\therefore\:\mathrm{Transverse}\:\mathrm{accl}. \\ $$$$\frac{\mathrm{1}}{\mathrm{r}}\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{r}^{\mathrm{2}} \frac{\mathrm{d}\theta}{\mathrm{dt}}\right)\:=\:\mathrm{0}\:\mathrm{proved} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Commented by Rio Michael last updated on 02/Jul/19

perfect!

$${perfect}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com