Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46045 by Tawa1 last updated on 20/Oct/18

A number is said to be ′′right prime′′ if despite dropping the left most  digits successively,  Number continues to be a prime number.    For example:  223 is a right prime because despite dropping 2 from left  most part, we obtain  23 as the prime number. Next, even after dropping   2 from left,  3 is a prime.       How many two digit numbers are right prime ?

$$\mathrm{A}\:\mathrm{number}\:\mathrm{is}\:\mathrm{said}\:\mathrm{to}\:\mathrm{be}\:''\mathrm{right}\:\mathrm{prime}''\:\mathrm{if}\:\mathrm{despite}\:\mathrm{dropping}\:\mathrm{the}\:\mathrm{left}\:\mathrm{most} \\ $$$$\mathrm{digits}\:\mathrm{successively},\:\:\mathrm{Number}\:\mathrm{continues}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}.\:\: \\ $$$$\mathrm{For}\:\mathrm{example}:\:\:\mathrm{223}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{prime}\:\mathrm{because}\:\mathrm{despite}\:\mathrm{dropping}\:\mathrm{2}\:\mathrm{from}\:\mathrm{left} \\ $$$$\mathrm{most}\:\mathrm{part},\:\mathrm{we}\:\mathrm{obtain}\:\:\mathrm{23}\:\mathrm{as}\:\mathrm{the}\:\mathrm{prime}\:\mathrm{number}.\:\mathrm{Next},\:\mathrm{even}\:\mathrm{after}\:\mathrm{dropping}\: \\ $$$$\mathrm{2}\:\mathrm{from}\:\mathrm{left},\:\:\mathrm{3}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}. \\ $$$$\:\:\:\:\:\mathrm{How}\:\mathrm{many}\:\mathrm{two}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{right}\:\mathrm{prime}\:? \\ $$

Answered by MJS last updated on 20/Oct/18

we only have to check x3 and x7  13 17 23 37 43 47 53 67 73 83 97  11 numbers

$$\mathrm{we}\:\mathrm{only}\:\mathrm{have}\:\mathrm{to}\:\mathrm{check}\:{x}\mathrm{3}\:\mathrm{and}\:{x}\mathrm{7} \\ $$$$\mathrm{13}\:\mathrm{17}\:\mathrm{23}\:\mathrm{37}\:\mathrm{43}\:\mathrm{47}\:\mathrm{53}\:\mathrm{67}\:\mathrm{73}\:\mathrm{83}\:\mathrm{97} \\ $$$$\mathrm{11}\:\mathrm{numbers} \\ $$

Commented by Tawa1 last updated on 20/Oct/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com