Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 198496 by mnjuly1970 last updated on 21/Oct/23

           A nice  series    If ,  Ω = Σ_(n=2) ^∞  (( 1)/(n^( 2)  +n −1)) =(( π tan( aπ ))/( b))       ⇒ find the value of   (b/a) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:{A}\:{nice}\:\:{series} \\ $$$$\:\:{If}\:,\:\:\Omega\:=\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{1}}{{n}^{\:\mathrm{2}} \:+{n}\:−\mathrm{1}}\:=\frac{\:\pi\:{tan}\left(\:{a}\pi\:\right)}{\:{b}} \\ $$$$\:\:\:\:\:\Rightarrow\:{find}\:{the}\:{value}\:{of}\:\:\:\frac{{b}}{{a}}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Answered by mr W last updated on 21/Oct/23

Ω=Σ_(n=2) ^∞ (1/(n^2 +n−1))=Σ_(n=1) ^∞ (1/(n^2 +n−1))−1  Σ_(n=1) ^∞ (1/(n^2 +n−1))  =Σ_(n=1) ^∞ (1/((n−p)(n−q)))  with p, q=((−1±(√5))/2) and p+q=−1, pq=−1  =(1/(p−q))Σ_(n=1) ^∞ ((1/(n−p))−(1/(n−q)))  =(1/(p−q))[ψ(1−q)−ψ(1−p)]  =(1/(p−q))[ψ(1+1+p)−ψ(1−p)]  =(1/(p−q))[ψ(1+p)+(1/(1+p))−ψ(1−p)]  =(1/(q−p))[ψ(p)+(1/p)+(1/(1+p))−ψ(p)−π cot pπ]  =(1/(p−q))[(1/p)+(1/(1+p))−π cot pπ]  =(1/(p−q))[(1/p)−(1/q)−π cot pπ]  =(1/(p−q))[((q−p)/(pq))−π cot pπ]  =−(1/(pq))−(π/(p−q)) cot pπ  =1−(π/( (√5))) cot (((−1+(√5))π)/2)  =1+(π/( (√5))) cot ((π/2)−(((√5)π)/2))  =1+(π/( (√5))) tan (((√5)π)/2)  Ω=1+(π/( (√5))) tan (((√5)π)/2)−1  Ω=(π/( (√5))) tan (((√5)π)/2)=((πtan (aπ))/b)  ⇒a=((√5)/2), b=(√5) ⇒(b/a)=2

$$\Omega=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{n}−\mathrm{1}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{n}−\mathrm{1}}−\mathrm{1} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{n}−\mathrm{1}} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}−{p}\right)\left({n}−{q}\right)}\:\:{with}\:{p},\:{q}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:{and}\:{p}+{q}=−\mathrm{1},\:{pq}=−\mathrm{1} \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−{p}}−\frac{\mathrm{1}}{{n}−{q}}\right) \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\psi\left(\mathrm{1}−{q}\right)−\psi\left(\mathrm{1}−{p}\right)\right] \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\psi\left(\mathrm{1}+\mathrm{1}+{p}\right)−\psi\left(\mathrm{1}−{p}\right)\right] \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\psi\left(\mathrm{1}+{p}\right)+\frac{\mathrm{1}}{\mathrm{1}+{p}}−\psi\left(\mathrm{1}−{p}\right)\right] \\ $$$$=\frac{\mathrm{1}}{{q}−{p}}\left[\psi\left({p}\right)+\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{\mathrm{1}+{p}}−\psi\left({p}\right)−\pi\:\mathrm{cot}\:{p}\pi\right] \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{\mathrm{1}+{p}}−\pi\:\mathrm{cot}\:{p}\pi\right] \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\frac{\mathrm{1}}{{p}}−\frac{\mathrm{1}}{{q}}−\pi\:\mathrm{cot}\:{p}\pi\right] \\ $$$$=\frac{\mathrm{1}}{{p}−{q}}\left[\frac{{q}−{p}}{{pq}}−\pi\:\mathrm{cot}\:{p}\pi\right] \\ $$$$=−\frac{\mathrm{1}}{{pq}}−\frac{\pi}{{p}−{q}}\:\mathrm{cot}\:{p}\pi \\ $$$$=\mathrm{1}−\frac{\pi}{\:\sqrt{\mathrm{5}}}\:\mathrm{cot}\:\frac{\left(−\mathrm{1}+\sqrt{\mathrm{5}}\right)\pi}{\mathrm{2}} \\ $$$$=\mathrm{1}+\frac{\pi}{\:\sqrt{\mathrm{5}}}\:\mathrm{cot}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{1}+\frac{\pi}{\:\sqrt{\mathrm{5}}}\:\mathrm{tan}\:\frac{\sqrt{\mathrm{5}}\pi}{\mathrm{2}} \\ $$$$\Omega=\mathrm{1}+\frac{\pi}{\:\sqrt{\mathrm{5}}}\:\mathrm{tan}\:\frac{\sqrt{\mathrm{5}}\pi}{\mathrm{2}}−\mathrm{1} \\ $$$$\Omega=\frac{\pi}{\:\sqrt{\mathrm{5}}}\:\mathrm{tan}\:\frac{\sqrt{\mathrm{5}}\pi}{\mathrm{2}}=\frac{\pi\mathrm{tan}\:\left({a}\pi\right)}{{b}} \\ $$$$\Rightarrow{a}=\frac{\sqrt{\mathrm{5}}}{\mathrm{2}},\:{b}=\sqrt{\mathrm{5}}\:\Rightarrow\frac{{b}}{{a}}=\mathrm{2} \\ $$

Commented by mnjuly1970 last updated on 21/Oct/23

so nice solution sir W    Bravo

$${so}\:{nice}\:{solution}\:{sir}\:{W} \\ $$$$\:\:{Bravo}\:\:\underline{\underbrace{ }} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com