Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 196774 by BaliramKumar last updated on 31/Aug/23

  A man standing on top of Burj Khalifa.  If the height of Burj Khalifa including a man is 830 m, then what is the maximum distance up to which a man can see objects on Earth?  (Earth's radius 6371 km)

$$ \\ $$A man standing on top of Burj Khalifa. If the height of Burj Khalifa including a man is 830 m, then what is the maximum distance up to which a man can see objects on Earth? (Earth's radius 6371 km)

Answered by Frix last updated on 31/Aug/23

h=.83km  r=6371km    (h+r)^2 =x^2 +r^2   x=(√(h(h+2r)))≈102.84km

$${h}=.\mathrm{83km} \\ $$$${r}=\mathrm{6371km} \\ $$$$ \\ $$$$\left({h}+{r}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${x}=\sqrt{{h}\left({h}+\mathrm{2}{r}\right)}\approx\mathrm{102}.\mathrm{84km} \\ $$

Commented by BaliramKumar last updated on 31/Aug/23

Commented by BaliramKumar last updated on 31/Aug/23

Please Sir,  green arc distance solution

$$\mathrm{Please}\:\mathrm{Sir},\:\:\mathrm{green}\:\mathrm{arc}\:\mathrm{distance}\:\mathrm{solution} \\ $$

Commented by mahdipoor last updated on 31/Aug/23

cosα=(r/(h+r)) , arc=rα

$${cos}\alpha=\frac{{r}}{{h}+{r}}\:,\:{arc}={r}\alpha \\ $$

Commented by Frix last updated on 01/Sep/23

Yes.

$$\mathrm{Yes}. \\ $$

Commented by mr W last updated on 01/Sep/23

α=cos^(−1) ((6371)/(6371+0.83))≈0  α≈tan α  arc=rα≈r tan α=x  compare:  arc=ra=102.833 km  x=r tan α=102.842 km

$$\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{6371}}{\mathrm{6371}+\mathrm{0}.\mathrm{83}}\approx\mathrm{0} \\ $$$$\alpha\approx\mathrm{tan}\:\alpha \\ $$$${arc}={r}\alpha\approx{r}\:\mathrm{tan}\:\alpha={x} \\ $$$${compare}: \\ $$$${arc}={ra}=\mathrm{102}.\mathrm{833}\:{km} \\ $$$${x}={r}\:\mathrm{tan}\:\alpha=\mathrm{102}.\mathrm{842}\:{km} \\ $$

Commented by BaliramKumar last updated on 01/Sep/23

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com