Question Number 26450 by Tinkutara last updated on 25/Dec/17 | ||
![]() | ||
$$\mathrm{A}\:\mathrm{man}\:\mathrm{of}\:\mathrm{mass}\:{M}\:\mathrm{is}\:\mathrm{standing}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{platform}\:\mathrm{of}\:\mathrm{mass}\:{m}_{\mathrm{1}} \:\mathrm{holding}\:\mathrm{a}\:\mathrm{string} \\ $$$$\mathrm{passing}\:\mathrm{over}\:\mathrm{a}\:\mathrm{system}\:\mathrm{of}\:\mathrm{ideal}\:\mathrm{pulleys}. \\ $$$$\mathrm{Another}\:\mathrm{mass}\:{m}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{hanging}\:\mathrm{as}\:\mathrm{shown} \\ $$$$\left({m}_{\mathrm{2}} \:=\:\mathrm{20}\:\mathrm{kg},\:{m}_{\mathrm{1}} \:=\:\mathrm{10}\:\mathrm{kg},\:{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$$$\mathrm{Force}\:\mathrm{exerted}\:\mathrm{by}\:\mathrm{man}\:\mathrm{on}\:\mathrm{string}\:\mathrm{to} \\ $$$$\mathrm{accelerate}\:\mathrm{upwards} \\ $$ | ||
Commented by Tinkutara last updated on 25/Dec/17 | ||
![]() | ||
Commented by mrW1 last updated on 26/Dec/17 | ||
![]() | ||
$$\left({A}\right) \\ $$$$\mathrm{3}{m}_{\mathrm{2}} {g}={Mg}+{m}_{\mathrm{1}} {g} \\ $$$$\Rightarrow{Mg}=\left(\mathrm{3}{m}_{\mathrm{2}} −{m}_{\mathrm{1}} \right){g}=\left(\mathrm{3}×\mathrm{20}−\mathrm{10}\right)×\mathrm{10}=\mathrm{500}\:{N} \\ $$$$\Rightarrow\left({R}\right) \\ $$$$ \\ $$$$\left({D}\right) \\ $$$${N}={Mg}−\mathrm{2}{m}_{\mathrm{2}} {g}=\mathrm{500}−\mathrm{2}×\mathrm{20}×\mathrm{10}=\mathrm{100}\:{N} \\ $$$$\Rightarrow\left({P}\right) \\ $$$$ \\ $$$$...\:{to}\:{continue} \\ $$ | ||
Commented by Tinkutara last updated on 26/Dec/17 | ||
![]() | ||
Commented by Tinkutara last updated on 26/Dec/17 | ||
Above was the full question. It is a Matrix matching columns. If the image is not clear see it at: http://ibb.co/mVtvPm | ||
Commented by mrW1 last updated on 26/Dec/17 | ||
![]() | ||
$${thanks}!\:{now}\:{it}'{s}\:{clear}. \\ $$ | ||
Answered by ajfour last updated on 26/Dec/17 | ||
![]() | ||
$${A}\rightarrow{R}\:\: \\ $$$${B}\rightarrow{R},{S},{T} \\ $$$${C}\rightarrow{P},{Q} \\ $$$${D}\rightarrow{P} \\ $$$${Are}\:{they}\:{correct}\:\left({by}\:{any}\:{chance}\right)? \\ $$ | ||
Answered by ajfour last updated on 26/Dec/17 | ||
![]() | ||
Commented by Tinkutara last updated on 27/Dec/17 | ||
So force exerted by man should be N? Right? | ||
Commented by Tinkutara last updated on 27/Dec/17 | ||
But N and F are different or not? | ||
Commented by ajfour last updated on 27/Dec/17 | ||
![]() | ||
$${under}\:{equilibrium}\:{of}\:{platform} \\ $$$${T}_{\mathrm{1}} =\frac{{T}_{\mathrm{2}} }{\mathrm{2}}=\frac{{F}}{\mathrm{2}}={N}+{m}_{\mathrm{1}} {g} \\ $$$${so}\:{N}\:{and}\:{F}\:{are}\:{different}. \\ $$ | ||
Commented by ajfour last updated on 27/Dec/17 | ||
why makes you arrive at this conclusion, do explain. | ||
Commented by Tinkutara last updated on 27/Dec/17 | ||
In B question it is asking about force exerted by man on string so it should be the normal reaction that man can exert on string because string is under his feet. | ||
Commented by ajfour last updated on 26/Dec/17 | ||
![]() | ||
$$\:\left({case}\:{I}\right){system}\:{boundary}\:{includes} \\ $$$${man}\:{and}\:{platform}: \\ $$$$\mathrm{3}{T}_{\mathrm{1}} −\left({M}+\mathrm{10}\right){g}=\mathrm{0}\:\:\:\:...\left({i}\right) \\ $$$${and}\:\:{also}\:\:{T}_{\mathrm{1}} =\mathrm{20}{g}\:\:\:\left({in}\:{equilibrium}\right) \\ $$$$\Rightarrow{M}=\mathrm{50}{kg}\:;\:{W}={Mg}=\mathrm{500}\:{newtons} \\ $$$$\Rightarrow\:\:{A}\rightarrow{R} \\ $$$${when}\:{in}\:{slight}\:{acceleration}\left(\uparrow\right) \\ $$$${F}=\mathrm{2}{T}_{\mathrm{1}} \\ $$$$\mathrm{20}{g}−\frac{{F}}{\mathrm{2}}>\:\mathrm{0}\:\:\:\Rightarrow\:\:{F}\:>\:\mathrm{40}{g}\: \\ $$$$\Rightarrow\:\:{hence}\:{B}\rightarrow\:\:{R},{S},{T} \\ $$$${and}\:{for}\:{slight}\:{acceleration}\:\left(\downarrow\right) \\ $$$${F}\:<\:\mathrm{40}{g} \\ $$$${and}\:\:{C}\rightarrow{P},{Q} \\ $$$${forces}\:{on}\:{platform}\left({in}\:{equilibrium}\right) \\ $$$$\:{T}_{\mathrm{1}} −\mathrm{10}{g}−{N}\:=\mathrm{0} \\ $$$${or}\:\:\frac{{F}}{\mathrm{2}}−\mathrm{10}{g}−{N}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{N}=\:\mathrm{200}−\mathrm{100}\:=\mathrm{100}\:{newtons} \\ $$$${so}\:\:\:{D}\rightarrow{P}\:. \\ $$ | ||
Commented by Tinkutara last updated on 27/Dec/17 | ||
![]() | ||
$${You}\:{wrote}\:{for}\:\left({B}\right)\:{that}\:{F}>\mathrm{40}{g}.\:{But} \\ $$$${force}\:{exerted}\:{by}\:{man}\:{on}\:{string}\:{should} \\ $$$${be}\:{N}\:\left({normal}\:{reaction}\right)\:{instead}\:{of}\:{F} \\ $$$$=\mathrm{2}{T}_{\mathrm{1}} .\:{Please}\:{explain}. \\ $$ | ||
Commented by ajfour last updated on 27/Dec/17 | ||
![]() | ||
$${F}={T}_{\mathrm{2}} =\mathrm{2}{T}_{\mathrm{1}} \:\:\left({Action}\leftrightarrow{Reaction}\right) \\ $$ | ||
Commented by ajfour last updated on 27/Dec/17 | ||
![]() | ||
$${no}\:{string}\:{under}\:{his}\:{feet},\:{that}\: \\ $$$${string}\:{is}\:{attached}\:{to}\:{platform} \\ $$$${m}_{\mathrm{1}} .\:{The}\:{question}\:{must}\:{be}\:{asking} \\ $$$${for}\:{the}\:{string}\:{he}\:{must}\:{be}\:{holding} \\ $$$${in}\:{hand},\:{which}\:{in}\:{diagram}\:\left({not}\right. \\ $$$$\left.{correctly}\:{drawn}\right)\:{has}\:{been}\:{attached} \\ $$$${to}\:{his}\:{head}.\:{so}\:{F}={T}_{\mathrm{2}} \:\neq{N}\:. \\ $$ | ||
Commented by Tinkutara last updated on 27/Dec/17 | ||
Thank you very much Sir! I got the answer. | ||