Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15418 by Tinkutara last updated on 10/Jun/17

A grasshopper can jump a maximum  horizontal distance of 40 cm. If it  spends negligible time on the ground  then in this case its speed along the  horizontal road will be?

$$\mathrm{A}\:\mathrm{grasshopper}\:\mathrm{can}\:\mathrm{jump}\:\mathrm{a}\:\mathrm{maximum} \\ $$$$\mathrm{horizontal}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{40}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{it} \\ $$$$\mathrm{spends}\:\mathrm{negligible}\:\mathrm{time}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{then}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{its}\:\mathrm{speed}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{road}\:\mathrm{will}\:\mathrm{be}? \\ $$

Answered by mrW1 last updated on 10/Jun/17

let  w=velocity of grasshopper at start  θ=angle at start  u=velocity horizontal  v=velocity vertical at start  g=10 m/s^2     u=wcos θ  v=wsin θ  y=vt−5t^2 =(v^2 /(100))−5(t^2 −2×(v/(10))t+(v^2 /(100)))=(v^2 /(100))−5(t−(v/(10)))^2   max. y at t=(v/(10))  time for a complete jump T=2×(v/(10))  x=uT  x=u×2×(v/(10))=wcos θ×2×((wsin θ)/(10))  =(w^2 /(10))×sin 2θ  max. x if sin 2θ=1 or θ=45°  max. x=(w^2 /(10))=d=40 cm  w=(√(10d))  u=wcos θ=(√(10d))×(1/(√2))=(√(5d)) (=(√((gd)/2)))  u=(√(5×0.4))=(√2) ≈ 1.4 m/s ≈ 5 km/h    ⇒the grasshopper has a speed of  about 5 km/h.

$$\mathrm{let} \\ $$$$\mathrm{w}=\mathrm{velocity}\:\mathrm{of}\:\mathrm{grasshopper}\:\mathrm{at}\:\mathrm{start} \\ $$$$\theta=\mathrm{angle}\:\mathrm{at}\:\mathrm{start} \\ $$$$\mathrm{u}=\mathrm{velocity}\:\mathrm{horizontal} \\ $$$$\mathrm{v}=\mathrm{velocity}\:\mathrm{vertical}\:\mathrm{at}\:\mathrm{start} \\ $$$$\mathrm{g}=\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{u}=\mathrm{wcos}\:\theta \\ $$$$\mathrm{v}=\mathrm{wsin}\:\theta \\ $$$$\mathrm{y}=\mathrm{vt}−\mathrm{5t}^{\mathrm{2}} =\frac{\mathrm{v}^{\mathrm{2}} }{\mathrm{100}}−\mathrm{5}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{2}×\frac{\mathrm{v}}{\mathrm{10}}\mathrm{t}+\frac{\mathrm{v}^{\mathrm{2}} }{\mathrm{100}}\right)=\frac{\mathrm{v}^{\mathrm{2}} }{\mathrm{100}}−\mathrm{5}\left(\mathrm{t}−\frac{\mathrm{v}}{\mathrm{10}}\right)^{\mathrm{2}} \\ $$$$\mathrm{max}.\:\mathrm{y}\:\mathrm{at}\:\mathrm{t}=\frac{\mathrm{v}}{\mathrm{10}} \\ $$$$\mathrm{time}\:\mathrm{for}\:\mathrm{a}\:\mathrm{complete}\:\mathrm{jump}\:\mathrm{T}=\mathrm{2}×\frac{\mathrm{v}}{\mathrm{10}} \\ $$$$\mathrm{x}=\mathrm{uT} \\ $$$$\mathrm{x}=\mathrm{u}×\mathrm{2}×\frac{\mathrm{v}}{\mathrm{10}}=\mathrm{wcos}\:\theta×\mathrm{2}×\frac{\mathrm{wsin}\:\theta}{\mathrm{10}} \\ $$$$=\frac{\mathrm{w}^{\mathrm{2}} }{\mathrm{10}}×\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\mathrm{max}.\:\mathrm{x}\:\mathrm{if}\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{1}\:\mathrm{or}\:\theta=\mathrm{45}° \\ $$$$\mathrm{max}.\:\mathrm{x}=\frac{\mathrm{w}^{\mathrm{2}} }{\mathrm{10}}=\mathrm{d}=\mathrm{40}\:\mathrm{cm} \\ $$$$\mathrm{w}=\sqrt{\mathrm{10d}} \\ $$$$\mathrm{u}=\mathrm{wcos}\:\theta=\sqrt{\mathrm{10d}}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}=\sqrt{\mathrm{5d}}\:\left(=\sqrt{\frac{\mathrm{gd}}{\mathrm{2}}}\right) \\ $$$$\mathrm{u}=\sqrt{\mathrm{5}×\mathrm{0}.\mathrm{4}}=\sqrt{\mathrm{2}}\:\approx\:\mathrm{1}.\mathrm{4}\:\mathrm{m}/\mathrm{s}\:\approx\:\mathrm{5}\:\mathrm{km}/\mathrm{h} \\ $$$$ \\ $$$$\Rightarrow\mathrm{the}\:\mathrm{grasshopper}\:\mathrm{has}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{about}\:\mathrm{5}\:\mathrm{km}/\mathrm{h}. \\ $$

Commented by Tinkutara last updated on 10/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 10/Jun/17

max horizontal range=(u^2 /g)  (u^2 /g)=(2/5)m, ⇒  u=2m/s   (with g=10m/s^2 )  θ=(π/4) for max. range  speed along horizontal is    ucos (π/4)=(2m/s)((1/(√2)))=(√2)m/s .

$${max}\:{horizontal}\:{range}=\frac{{u}^{\mathrm{2}} }{{g}} \\ $$$$\frac{{u}^{\mathrm{2}} }{{g}}=\frac{\mathrm{2}}{\mathrm{5}}{m},\:\Rightarrow\:\:{u}=\mathrm{2}{m}/{s}\:\:\:\left({with}\:{g}=\mathrm{10}{m}/{s}^{\mathrm{2}} \right) \\ $$$$\theta=\frac{\pi}{\mathrm{4}}\:{for}\:{max}.\:{range} \\ $$$${speed}\:{along}\:{horizontal}\:{is} \\ $$$$\:\:{u}\mathrm{cos}\:\frac{\pi}{\mathrm{4}}=\left(\mathrm{2}{m}/{s}\right)\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)=\sqrt{\mathrm{2}}{m}/{s}\:. \\ $$

Commented by Tinkutara last updated on 10/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com