Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 19472 by Tinkutara last updated on 11/Aug/17

A fishing boat is anchored 9 km away  from the nearest point on the shore. A  messanger must be sent from the fishing  boat to a camp, 15 km from the point  on shore closest to boat. If the messanger  can walk at a speed of 5 km per hour  and can row at 4 km/h, determine the  distance of that point (in km) from the  shore, where he must land so as to  reach the shore in least possible time.

$$\mathrm{A}\:\mathrm{fishing}\:\mathrm{boat}\:\mathrm{is}\:\mathrm{anchored}\:\mathrm{9}\:\mathrm{km}\:\mathrm{away} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{shore}.\:\mathrm{A} \\ $$$$\mathrm{messanger}\:\mathrm{must}\:\mathrm{be}\:\mathrm{sent}\:\mathrm{from}\:\mathrm{the}\:\mathrm{fishing} \\ $$$$\mathrm{boat}\:\mathrm{to}\:\mathrm{a}\:\mathrm{camp},\:\mathrm{15}\:\mathrm{km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{shore}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{boat}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{messanger} \\ $$$$\mathrm{can}\:\mathrm{walk}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{5}\:\mathrm{km}\:\mathrm{per}\:\mathrm{hour} \\ $$$$\mathrm{and}\:\mathrm{can}\:\mathrm{row}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{h},\:\mathrm{determine}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\mathrm{that}\:\mathrm{point}\:\left(\mathrm{in}\:\mathrm{km}\right)\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{shore},\:\mathrm{where}\:\mathrm{he}\:\mathrm{must}\:\mathrm{land}\:\mathrm{so}\:\mathrm{as}\:\mathrm{to} \\ $$$$\mathrm{reach}\:\mathrm{the}\:\mathrm{shore}\:\mathrm{in}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{time}. \\ $$

Commented by Tinkutara last updated on 11/Aug/17

Commented by mrW1 last updated on 11/Aug/17

t=((15−x)/5)+((√(9^2 +x^2 ))/4)  (dt/dx)=−(1/5)+(x/(4(√(9^2 +x^2 ))))=0  (x/(√(9^2 +x^2 )))=(4/5)  (x^2 /(81+x^2 ))=((16)/(25))  x^2 =16×9  x=12

$$\mathrm{t}=\frac{\mathrm{15}−\mathrm{x}}{\mathrm{5}}+\frac{\sqrt{\mathrm{9}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }}{\mathrm{4}} \\ $$$$\frac{\mathrm{dt}}{\mathrm{dx}}=−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{x}}{\mathrm{4}\sqrt{\mathrm{9}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\frac{\mathrm{x}}{\sqrt{\mathrm{9}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{81}+\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{16}}{\mathrm{25}} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{16}×\mathrm{9} \\ $$$$\mathrm{x}=\mathrm{12} \\ $$

Commented by Tinkutara last updated on 12/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com