Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16737 by Tinkutara last updated on 26/Jun/17

A convex hexagon is given in which  any two opposite sides have the  following property: the distance  between their midpoints is ((√3)/2) times the  sum of their lengths. Prove that the  hexagon is equiangular.

$$\mathrm{A}\:\mathrm{convex}\:\mathrm{hexagon}\:\mathrm{is}\:\mathrm{given}\:\mathrm{in}\:\mathrm{which} \\ $$$$\mathrm{any}\:\mathrm{two}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{property}:\:\mathrm{the}\:\mathrm{distance} \\ $$$$\mathrm{between}\:\mathrm{their}\:\mathrm{midpoints}\:\mathrm{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{times}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{lengths}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{hexagon}\:\mathrm{is}\:\mathrm{equiangular}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com