Question and Answers Forum

All Questions      Topic List

States of Matter Questions

Previous in All Question      Next in All Question      

Previous in States of Matter      Next in States of Matter      

Question Number 203878 by Spillover last updated on 31/Jan/24

A compound M is composed of 52.2%   carbon ,13% hydrogenand the rest   is oxygen.if the molecuar mass of M is 138  (a)The empirical formular  (b)The molecular formular  31/1/2024

$$\mathrm{A}\:\mathrm{compound}\:\mathrm{M}\:\mathrm{is}\:\mathrm{composed}\:\mathrm{of}\:\mathrm{52}.\mathrm{2\%}\: \\ $$$$\mathrm{carbon}\:,\mathrm{13\%}\:\mathrm{hydrogenand}\:\mathrm{the}\:\mathrm{rest}\: \\ $$$$\mathrm{is}\:\mathrm{oxygen}.\mathrm{if}\:\mathrm{the}\:\mathrm{molecuar}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{M}\:\mathrm{is}\:\mathrm{138} \\ $$$$\left(\mathrm{a}\right)\mathrm{The}\:\mathrm{empirical}\:\mathrm{formular} \\ $$$$\left(\mathrm{b}\right)\mathrm{The}\:\mathrm{molecular}\:\mathrm{formular} \\ $$$$\mathrm{31}/\mathrm{1}/\mathrm{2024} \\ $$

Answered by Calculusboy last updated on 31/Jan/24

Solution: to get oxygen;100−(52.2+13)=34.8  empirical formula:  c_((52.2)/(12))    h_((13)/1)    o_((34.8)/(16))                                                       4.35  13   2.175      divide by smaller number                                                    2         5.977    1  empirical formula :  C_2 H_6 O  molecular formula: [C_2 H_6 O]_n =138  [(12×2)+(1×6)+(16×1)]_n =138  [24+6+16]_n =138  46n=138  n=((138)/(46))=3  ∴molecular formula:[C_2 H_6 O]_3 =C_6 H_(18) O_3

$$\boldsymbol{{Solution}}:\:\boldsymbol{{to}}\:\boldsymbol{{get}}\:\boldsymbol{{oxygen}};\mathrm{100}−\left(\mathrm{52}.\mathrm{2}+\mathrm{13}\right)=\mathrm{34}.\mathrm{8} \\ $$$$\boldsymbol{{empirical}}\:\boldsymbol{{formula}}:\:\:\underset{\frac{\mathrm{52}.\mathrm{2}}{\mathrm{12}}} {\boldsymbol{{c}}}\:\:\:\underset{\frac{\mathrm{13}}{\mathrm{1}}} {\boldsymbol{{h}}}\:\:\:\underset{\frac{\mathrm{34}.\mathrm{8}}{\mathrm{16}}} {\boldsymbol{{o}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}.\mathrm{35}\:\:\mathrm{13}\:\:\:\mathrm{2}.\mathrm{175}\:\:\:\: \\ $$$$\boldsymbol{{divide}}\:\boldsymbol{{by}}\:\boldsymbol{{smaller}}\:\boldsymbol{{number}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\mathrm{5}.\mathrm{977}\:\:\:\:\mathrm{1} \\ $$$$\boldsymbol{{empirical}}\:\boldsymbol{{formula}}\::\:\:\boldsymbol{{C}}_{\mathrm{2}} \boldsymbol{{H}}_{\mathrm{6}} \boldsymbol{{O}} \\ $$$$\boldsymbol{{molecular}}\:\boldsymbol{{formula}}:\:\left[\boldsymbol{{C}}_{\mathrm{2}} \boldsymbol{{H}}_{\mathrm{6}} \boldsymbol{{O}}\right]_{\boldsymbol{{n}}} =\mathrm{138} \\ $$$$\left[\left(\mathrm{12}×\mathrm{2}\right)+\left(\mathrm{1}×\mathrm{6}\right)+\left(\mathrm{16}×\mathrm{1}\right)\right]_{\boldsymbol{{n}}} =\mathrm{138} \\ $$$$\left[\mathrm{24}+\mathrm{6}+\mathrm{16}\right]_{\boldsymbol{{n}}} =\mathrm{138} \\ $$$$\mathrm{46}\boldsymbol{{n}}=\mathrm{138} \\ $$$$\boldsymbol{{n}}=\frac{\mathrm{138}}{\mathrm{46}}=\mathrm{3} \\ $$$$\therefore\boldsymbol{{molecular}}\:\boldsymbol{{formula}}:\left[\boldsymbol{{C}}_{\mathrm{2}} \boldsymbol{{H}}_{\mathrm{6}} \boldsymbol{{O}}\right]_{\mathrm{3}} =\boldsymbol{{C}}_{\mathrm{6}} \boldsymbol{{H}}_{\mathrm{18}} \boldsymbol{{O}}_{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Commented by Spillover last updated on 11/Feb/24

correct

$${correct} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com