Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 5291 by Rasheed Soomro last updated on 05/May/16

A circle has been drawn with one  unit opened compass on  surface  of a sphere of one unit radius.   What will be the area of the circle?

$$\mathrm{A}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}\:\mathrm{with}\:\mathrm{one} \\ $$$$\mathrm{unit}\:\mathrm{opened}\:\mathrm{compass}\:\mathrm{on}\:\:\mathrm{surface} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{one}\:\mathrm{unit}\:\mathrm{radius}.\: \\ $$$$\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}? \\ $$

Commented by Yozzii last updated on 05/May/16

A=0.75π

$${A}=\mathrm{0}.\mathrm{75}\pi \\ $$

Commented by Yozzii last updated on 05/May/16

Place the compass on the sphere such  that its amplitude of 1 unit is unaltered.  Call the line joining the two points  where the compass meets the sphere   as AB. So ∣AB∣=1. Let O be the centre  of the sphere. It follows that ∣OA∣=∣OB∣=1  since points A and B lie on the sphere.  But, ∣AB∣=1 also. Hence, ∣AB∣=∣OA∣=∣OB∣  for △ABO. And so, △ABO is equilateral.  ⇒∠BOA=∠OAB=∠ABO=(π/3).   Let J be a point on the line BO such  that AJ⊥BO. Since △ABO is equilateral,  AJ is a perpendicular bisector of BO.  So, we have ∠BAJ=(1/2)∠BA0=(π/6)  and ∣AB∣=1.⇒ ∣BJ∣=∣AB∣cos∠BAJ  ∣BJ∣=1×cos(π/6)=((√3)/2). Hence, the radius  of the circle in question is r=((√3)/2).  Using area,A=πr^2 ⇒A=((3π)/4) square units.

$${Place}\:{the}\:{compass}\:{on}\:{the}\:{sphere}\:{such} \\ $$$${that}\:{its}\:{amplitude}\:{of}\:\mathrm{1}\:{unit}\:{is}\:{unaltered}. \\ $$$${Call}\:{the}\:{line}\:{joining}\:{the}\:{two}\:{points} \\ $$$${where}\:{the}\:{compass}\:{meets}\:{the}\:{sphere}\: \\ $$$${as}\:{AB}.\:{So}\:\mid{AB}\mid=\mathrm{1}.\:{Let}\:{O}\:{be}\:{the}\:{centre} \\ $$$${of}\:{the}\:{sphere}.\:{It}\:{follows}\:{that}\:\mid{OA}\mid=\mid{OB}\mid=\mathrm{1} \\ $$$${since}\:{points}\:{A}\:{and}\:{B}\:{lie}\:{on}\:{the}\:{sphere}. \\ $$$${But},\:\mid{AB}\mid=\mathrm{1}\:{also}.\:{Hence},\:\mid{AB}\mid=\mid{OA}\mid=\mid{OB}\mid \\ $$$${for}\:\bigtriangleup{ABO}.\:{And}\:{so},\:\bigtriangleup{ABO}\:{is}\:{equilateral}. \\ $$$$\Rightarrow\angle{BOA}=\angle{OAB}=\angle{ABO}=\frac{\pi}{\mathrm{3}}.\: \\ $$$${Let}\:{J}\:{be}\:{a}\:{point}\:{on}\:{the}\:{line}\:{BO}\:{such} \\ $$$${that}\:{AJ}\bot{BO}.\:{Since}\:\bigtriangleup{ABO}\:{is}\:{equilateral}, \\ $$$${AJ}\:{is}\:{a}\:{perpendicular}\:{bisector}\:{of}\:{BO}. \\ $$$${So},\:{we}\:{have}\:\angle{BAJ}=\frac{\mathrm{1}}{\mathrm{2}}\angle{BA}\mathrm{0}=\frac{\pi}{\mathrm{6}} \\ $$$${and}\:\mid{AB}\mid=\mathrm{1}.\Rightarrow\:\mid{BJ}\mid=\mid{AB}\mid{cos}\angle{BAJ} \\ $$$$\mid{BJ}\mid=\mathrm{1}×{cos}\frac{\pi}{\mathrm{6}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}.\:{Hence},\:{the}\:{radius} \\ $$$${of}\:{the}\:{circle}\:{in}\:{question}\:{is}\:{r}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}. \\ $$$${Using}\:{area},{A}=\pi{r}^{\mathrm{2}} \Rightarrow{A}=\frac{\mathrm{3}\pi}{\mathrm{4}}\:{square}\:{units}. \\ $$

Commented by Rasheed Soomro last updated on 05/May/16

Th^α nkS! I am trying to understand!  I think that circle on a sphere is  concave surface.. ..Anyway I like your  approach very much. Not only in this  answer but I always  like your approach!

$$\mathbb{T}\boldsymbol{\mathrm{h}}^{\alpha} \boldsymbol{\mathrm{n}}\Bbbk\boldsymbol{\mathrm{S}}!\:\mathrm{I}\:\mathrm{am}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{understand}! \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{circle}\:\mathrm{on}\:\mathrm{a}\:\mathrm{sphere}\:\mathrm{is} \\ $$$$\mathrm{concave}\:\mathrm{surface}..\:..\mathrm{Anyway}\:\mathrm{I}\:\mathrm{like}\:\mathrm{your} \\ $$$$\mathrm{approach}\:\mathrm{very}\:\mathrm{much}.\:\mathrm{Not}\:\mathrm{only}\:\mathrm{in}\:\mathrm{this} \\ $$$$\mathrm{answer}\:\mathrm{but}\:\mathrm{I}\:\boldsymbol{\mathrm{always}}\:\:\mathrm{like}\:\mathrm{your}\:\mathrm{approach}! \\ $$

Commented by Yozzii last updated on 05/May/16

Ah yes. Thats a section of the surface  of the sphere. Integral Calculus can easily  derive the surface area given the  central angle. You′d thus have to  inregrate the function y=(√(1−x^2 ))  between 0.5≤x≤1 using  S=∫_(0.5) ^1 2πy(√(1+((dy/dx))^2 ))dx.  That section,the cross−section  of the sphere, defined by x^2 +y^2 =1  and 0.5≤x≤1 is rotated 2π radians  about the x−axis. The geometry that I have  outlined is what helps us find the  lower limit of x=0.5.

$${Ah}\:{yes}.\:{Thats}\:{a}\:{section}\:{of}\:{the}\:{surface} \\ $$$${of}\:{the}\:{sphere}.\:{Integral}\:{Calculus}\:{can}\:{easily} \\ $$$${derive}\:{the}\:{surface}\:{area}\:{given}\:{the} \\ $$$${central}\:{angle}.\:{You}'{d}\:{thus}\:{have}\:{to} \\ $$$${inregrate}\:{the}\:{function}\:{y}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${between}\:\mathrm{0}.\mathrm{5}\leqslant{x}\leqslant\mathrm{1}\:{using} \\ $$$${S}=\int_{\mathrm{0}.\mathrm{5}} ^{\mathrm{1}} \mathrm{2}\pi{y}\sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }{dx}. \\ $$$${That}\:{section},{the}\:{cross}−{section} \\ $$$${of}\:{the}\:{sphere},\:{defined}\:{by}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${and}\:\mathrm{0}.\mathrm{5}\leqslant{x}\leqslant\mathrm{1}\:{is}\:{rotated}\:\mathrm{2}\pi\:{radians} \\ $$$${about}\:{the}\:{x}−{axis}.\:{The}\:{geometry}\:{that}\:{I}\:{have} \\ $$$${outlined}\:{is}\:{what}\:{helps}\:{us}\:{find}\:{the} \\ $$$${lower}\:{limit}\:{of}\:{x}=\mathrm{0}.\mathrm{5}. \\ $$

Commented by Yozzii last updated on 05/May/16

What my initial answer gave was  the area of the region of a planar  cut of the sphere in the circle generated  by the compass.

$${What}\:{my}\:{initial}\:{answer}\:{gave}\:{was} \\ $$$${the}\:{area}\:{of}\:{the}\:{region}\:{of}\:{a}\:{planar} \\ $$$${cut}\:{of}\:{the}\:{sphere}\:{in}\:{the}\:{circle}\:{generated} \\ $$$${by}\:{the}\:{compass}. \\ $$

Commented by Rasheed Soomro last updated on 05/May/16

ThankS again!

$$\boldsymbol{\mathrm{ThankS}}\:\boldsymbol{\mathrm{again}}! \\ $$

Commented by Yozzii last updated on 05/May/16

y^2 +x^2 =1⇒2yy^′ +2x=0 (implicit differentiation)  ⇒y^′ =−(x/y)⇒(y^′ )^2 +1=((x^2 +y^2 )/y^2 )=(1/y^2 )   (y>0 for 0.5≤x≤1)  ∴ (√(1+(y′)^2 ))=(1/(∣y∣))=(1/y)⇒y(√(1+(y^′ )^2 ))=1  ∴S=2π∫_(0.5) ^1 dx=π square units.

$${y}^{\mathrm{2}} +{x}^{\mathrm{2}} =\mathrm{1}\Rightarrow\mathrm{2}{yy}^{'} +\mathrm{2}{x}=\mathrm{0}\:\left({implicit}\:{differentiation}\right) \\ $$$$\Rightarrow{y}^{'} =−\frac{{x}}{{y}}\Rightarrow\left({y}^{'} \right)^{\mathrm{2}} +\mathrm{1}=\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:\:\:\left({y}>\mathrm{0}\:{for}\:\mathrm{0}.\mathrm{5}\leqslant{x}\leqslant\mathrm{1}\right) \\ $$$$\therefore\:\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mid{y}\mid}=\frac{\mathrm{1}}{{y}}\Rightarrow{y}\sqrt{\mathrm{1}+\left({y}^{'} \right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\therefore{S}=\mathrm{2}\pi\int_{\mathrm{0}.\mathrm{5}} ^{\mathrm{1}} {dx}=\pi\:{square}\:{units}. \\ $$

Commented by Yozzii last updated on 05/May/16

Archimedes′ tombstone theorem is  applicable here. So the required surface  area, after finding that ∣JB∣=0.5,  Area of surface of sphere between J and B  equals the surface area of the surface, between  two parallel planes containing the portion of sphere, of  a cylinder circumscribing the entire  sphere in question  ∴ S=2πrh  where r=radius of entire sphere  h=∣BJ∣=0.5  ⇒S=2π×1×0.5=π square units as was found  by integral calculus.   The Pappus−Guldin theorem gives  an alternative but perhaps longer   method since the y coordinate of the cetroid of the region  bounded by x=0.5,x=1, y=0 and  x^2 +y^2 =1 needs to be found.                     ⇒ S=2πy^� s_0   where s_0 =arc length of y=rθ=1×(π/3)=(π/3) units,  for 0.5≤x≤1.

$${Archimedes}'\:{tombstone}\:{theorem}\:{is} \\ $$$${applicable}\:{here}.\:{So}\:{the}\:{required}\:{surface} \\ $$$${area},\:{after}\:{finding}\:{that}\:\mid{JB}\mid=\mathrm{0}.\mathrm{5}, \\ $$$${Area}\:{of}\:{surface}\:{of}\:{sphere}\:{between}\:{J}\:{and}\:{B} \\ $$$${equals}\:{the}\:{surface}\:{area}\:{of}\:{the}\:{surface},\:{between} \\ $$$${two}\:{parallel}\:{planes}\:{containing}\:{the}\:{portion}\:{of}\:{sphere},\:{of} \\ $$$${a}\:{cylinder}\:{circumscribing}\:{the}\:{entire} \\ $$$${sphere}\:{in}\:{question} \\ $$$$\therefore\:{S}=\mathrm{2}\pi{rh} \\ $$$${where}\:{r}={radius}\:{of}\:{entire}\:{sphere} \\ $$$${h}=\mid{BJ}\mid=\mathrm{0}.\mathrm{5} \\ $$$$\Rightarrow{S}=\mathrm{2}\pi×\mathrm{1}×\mathrm{0}.\mathrm{5}=\pi\:{square}\:{units}\:{as}\:{was}\:{found} \\ $$$${by}\:{integral}\:{calculus}.\: \\ $$$${The}\:{Pappus}−{Guldin}\:{theorem}\:{gives} \\ $$$${an}\:{alternative}\:{but}\:{perhaps}\:{longer}\: \\ $$$${method}\:{since}\:{the}\:{y}\:{coordinate}\:{of}\:{the}\:{cetroid}\:{of}\:{the}\:{region} \\ $$$${bounded}\:{by}\:{x}=\mathrm{0}.\mathrm{5},{x}=\mathrm{1},\:{y}=\mathrm{0}\:{and} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\:{needs}\:{to}\:{be}\:{found}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{S}=\mathrm{2}\pi\bar {{y}s}_{\mathrm{0}} \\ $$$${where}\:{s}_{\mathrm{0}} ={arc}\:{length}\:{of}\:{y}={r}\theta=\mathrm{1}×\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{3}}\:{units}, \\ $$$${for}\:\mathrm{0}.\mathrm{5}\leqslant{x}\leqslant\mathrm{1}. \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 06/May/16

LOT OF Knowledge!  LOT OF  ThankS!

$$\mathbb{LOT}\:\mathcal{OF}\:\mathrm{Knowledge}! \\ $$$$\mathbb{LOT}\:\mathcal{OF}\:\:\mathbb{T}\mathrm{han}\Bbbk\mathcal{S}! \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com