Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 99960 by bemath last updated on 24/Jun/20

Given y(√x)+x(√y) = 2. find the value of  (dy/dx) ∣_((1,1))  = ?

$$\mathrm{Given}\:\mathrm{y}\sqrt{\mathrm{x}}+\mathrm{x}\sqrt{\mathrm{y}}\:=\:\mathrm{2}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\mid_{\left(\mathrm{1},\mathrm{1}\right)} \:=\:?\: \\ $$

Commented by Dwaipayan Shikari last updated on 24/Jun/20

−1

$$−\mathrm{1} \\ $$

Answered by Rio Michael last updated on 24/Jun/20

 (√x) (dy/dx) + (y/(2(√x))) + (x/(2(√y))) (dy/dx) + (√y) = 0  ⇒  (√1) (dy/dx)∣_((1,1))  +(1/(2(√1))) + (1/(2(√1))) (dy/dx)∣_((1,1))  + (√1) = 0

$$\:\sqrt{{x}}\:\frac{{dy}}{{dx}}\:+\:\frac{{y}}{\mathrm{2}\sqrt{{x}}}\:+\:\frac{{x}}{\mathrm{2}\sqrt{{y}}}\:\frac{{dy}}{{dx}}\:+\:\sqrt{{y}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\sqrt{\mathrm{1}}\:\frac{{dy}}{{dx}}\mid_{\left(\mathrm{1},\mathrm{1}\right)} \:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}\:+\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}\:\frac{{dy}}{{dx}}\mid_{\left(\mathrm{1},\mathrm{1}\right)} \:+\:\sqrt{\mathrm{1}}\:=\:\mathrm{0} \\ $$$$ \\ $$

Answered by 1549442205 last updated on 24/Jun/20

Derivative two sides of the givenwewe equation  by x we obtain y^′ (√x)+(y/(2(√x)))+(√y)+((xy′)/(2(√y)))=0  ⇒y′((√x)+(x/(2(√y))))=−((y/(2(√x)))+(√y))⇒y′=((−(2(√(xy))+y))/(2(√(xy))+x))  ⇒y′∣_((1,1)) =((−(2(√(xy))+y))/(2(√(xy))+x))∣_((1,1)) =((−3)/3)=−1

$$\mathrm{Derivative}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{givenwewe}\:\mathrm{equation} \\ $$$$\mathrm{by}\:\mathrm{x}\:\mathrm{we}\:\mathrm{obtain}\:\mathrm{y}^{'} \sqrt{\mathrm{x}}+\frac{\mathrm{y}}{\mathrm{2}\sqrt{\mathrm{x}}}+\sqrt{\mathrm{y}}+\frac{\mathrm{xy}'}{\mathrm{2}\sqrt{\mathrm{y}}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{y}'\left(\sqrt{\mathrm{x}}+\frac{\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{y}}}\right)=−\left(\frac{\mathrm{y}}{\mathrm{2}\sqrt{\mathrm{x}}}+\sqrt{\mathrm{y}}\right)\Rightarrow\mathrm{y}'=\frac{−\left(\mathrm{2}\sqrt{\mathrm{xy}}+\mathrm{y}\right)}{\mathrm{2}\sqrt{\mathrm{xy}}+\mathrm{x}} \\ $$$$\Rightarrow\mathrm{y}'\mid_{\left(\mathrm{1},\mathrm{1}\right)} =\frac{−\left(\mathrm{2}\sqrt{\mathrm{xy}}+\mathrm{y}\right)}{\mathrm{2}\sqrt{\mathrm{xy}}+\mathrm{x}}\mid_{\left(\mathrm{1},\mathrm{1}\right)} =\frac{−\mathrm{3}}{\mathrm{3}}=−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com