Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99007 by Rio Michael last updated on 18/Jun/20

Let I_y  = ∫_(−2) ^2 [y^3  cos ((y/2)) + (1/2)]((√(4−y^2 )) ) dy   then I_y  = ???

$$\mathrm{Let}\:{I}_{{y}} \:=\:\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{y}^{\mathrm{3}} \:\mathrm{cos}\:\left(\frac{{y}}{\mathrm{2}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\right]\left(\sqrt{\mathrm{4}−{y}^{\mathrm{2}} }\:\right)\:{dy}\: \\ $$$$\mathrm{then}\:{I}_{{y}} \:=\:??? \\ $$

Answered by maths mind last updated on 18/Jun/20

try ∫_(−2) ^0 +∫_0 ^2   and put t=−x in first one   f(x)=(x^3 cos((x/2))+(1/2))(√(4−x^2 )) we get  ∫_0 ^2 (f(x)+f(−x))dx

$${try}\:\int_{−\mathrm{2}} ^{\mathrm{0}} +\int_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${and}\:{put}\:{t}=−{x}\:{in}\:{first}\:{one}\: \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{we}\:{get} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \left({f}\left({x}\right)+{f}\left(−{x}\right)\right){dx} \\ $$

Commented by Rio Michael last updated on 18/Jun/20

Thanks ,i solved it already.

$$\mathrm{Thanks}\:,\mathrm{i}\:\mathrm{solved}\:\mathrm{it}\:\mathrm{already}. \\ $$

Commented by maths mind last updated on 18/Jun/20

withe pleaser Nice sir

$${withe}\:{pleaser}\:{Nice}\:{sir} \\ $$

Answered by frc2crc last updated on 18/Jun/20

it should be π

$${it}\:{should}\:{be}\:\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com