Question Number 98815 by M±th+et+s last updated on 16/Jun/20 | ||
$${what}\:{is}\:{heisenberg}\:{uncertainty}\:{principle}? \\ $$$$ \\ $$ | ||
Answered by Rio Michael last updated on 17/Jun/20 | ||
$$\mathrm{This}\:\mathrm{should}\:\mathrm{be}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{laws}\:\mathrm{of}\:\mathrm{Quantum} \\ $$$$\mathrm{mechanics}\:\mathrm{which}\:\mathrm{states}\:\mathrm{that}\:'\mathrm{it}\:\mathrm{is}\:\mathrm{impossible}\:\mathrm{to}\:\mathrm{know} \\ $$$$\mathrm{the}\:\mathrm{actual}\:\mathrm{position}\:\mathrm{and}\:\mathrm{momentum}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{space} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{predict}\:\mathrm{it}.''\: \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{say}\:\:\Delta{x}\:.\:\Delta{p}\:\geqslant\:\frac{{h}}{\mathrm{4}\pi} \\ $$$$\mathrm{where}\:\Delta{x}\:=\:\mathrm{position} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Delta{p}\:=\:\mathrm{momentum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{h}\:=\:\mathrm{plank}'\mathrm{s}\:\mathrm{constant} \\ $$ | ||
Commented by M±th+et+s last updated on 17/Jun/20 | ||
$${thank}\:{you}\:{sir}\: \\ $$ | ||