Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 97157 by mhmd last updated on 06/Jun/20

Commented by mhmd last updated on 06/Jun/20

sir please help me i want Ex(3) and Ex(4)

$${sir}\:{please}\:{help}\:{me}\:{i}\:{want}\:{Ex}\left(\mathrm{3}\right)\:{and}\:{Ex}\left(\mathrm{4}\right) \\ $$

Answered by Sourav mridha last updated on 06/Jun/20

Ex(2).coshx=((e^x +e^(−x) )/2)                 sinhx=((e^x −e^(−x) )/2)  (coshx+sinhx)^n =e^(nx)                                            =[((e^(nx) +e^(−nx) )/2)+((e^(nx) −e^(−nx) )/2)]                      =   cosh(nx)+sinh(nx)

$$\boldsymbol{{E}}\mathrm{x}\left(\mathrm{2}\right).\boldsymbol{{coshx}}=\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} +\boldsymbol{{e}}^{−\boldsymbol{{x}}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{sinhx}}=\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\boldsymbol{{x}}} }{\mathrm{2}} \\ $$$$\left(\boldsymbol{{coshx}}+\boldsymbol{{sinhx}}\right)^{\boldsymbol{{n}}} =\boldsymbol{{e}}^{\boldsymbol{{nx}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[\frac{\boldsymbol{{e}}^{\boldsymbol{{nx}}} +\boldsymbol{{e}}^{−\boldsymbol{{nx}}} }{\mathrm{2}}+\frac{\boldsymbol{{e}}^{\boldsymbol{{nx}}} −\boldsymbol{{e}}^{−\boldsymbol{{nx}}} }{\mathrm{2}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\:\boldsymbol{{cosh}}\left(\boldsymbol{{nx}}\right)+\boldsymbol{{sinh}}\left(\boldsymbol{{nx}}\right) \\ $$

Commented by mhmd last updated on 06/Jun/20

thank you sir please help me in Ex(3)

$${thank}\:{you}\:{sir}\:{please}\:{help}\:{me}\:{in}\:{Ex}\left(\mathrm{3}\right) \\ $$

Answered by Sourav mridha last updated on 06/Jun/20

Ex(4)sinh(3x)=((e^(3x) −e^(−3x) )/2)  =(1/2)[(e^x −e^(−x) )^3 +3e^x .e^(−x) (e^x −e^(−x) )]  =3[((e^x −e^(−x) )/2)]+(2^3 /2)[((e^x −e^(−x) )/2)]^3   =3sinh(x)+4sinh^3 (x).

$$\boldsymbol{{Ex}}\left(\mathrm{4}\right)\boldsymbol{{sinh}}\left(\mathrm{3}\boldsymbol{{x}}\right)=\frac{\boldsymbol{{e}}^{\mathrm{3}\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\mathrm{3}\boldsymbol{{x}}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\boldsymbol{{e}}^{\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\boldsymbol{{x}}} \right)^{\mathrm{3}} +\mathrm{3}\boldsymbol{{e}}^{\boldsymbol{{x}}} .\boldsymbol{{e}}^{−\boldsymbol{{x}}} \left(\boldsymbol{{e}}^{\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\boldsymbol{{x}}} \right)\right] \\ $$$$=\mathrm{3}\left[\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\boldsymbol{{x}}} }{\mathrm{2}}\right]+\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{2}}\left[\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\boldsymbol{{e}}^{−\boldsymbol{{x}}} }{\mathrm{2}}\right]^{\mathrm{3}} \\ $$$$=\mathrm{3}\boldsymbol{{sinh}}\left(\boldsymbol{{x}}\right)+\mathrm{4}\boldsymbol{{sinh}}^{\mathrm{3}} \left(\boldsymbol{{x}}\right). \\ $$

Answered by mathmax by abdo last updated on 06/Jun/20

3) we have ch^2 x−sh^2 x =1 ⇒ch^2 x =1+sh^2 x =1+tan^2 θ  but chx>0 ⇒ch(x)=(√(1+tan^2 θ))=(1/(cosθ))  thx =((shx)/(chx)) =((tanθ)/(1/(cosθ))) =cosθ×((sinθ)/(cosθ)) =sinθ

$$\left.\mathrm{3}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{ch}^{\mathrm{2}} \mathrm{x}−\mathrm{sh}^{\mathrm{2}} \mathrm{x}\:=\mathrm{1}\:\Rightarrow\mathrm{ch}^{\mathrm{2}} \mathrm{x}\:=\mathrm{1}+\mathrm{sh}^{\mathrm{2}} \mathrm{x}\:=\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta \\ $$$$\mathrm{but}\:\mathrm{chx}>\mathrm{0}\:\Rightarrow\mathrm{ch}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}=\frac{\mathrm{1}}{\mathrm{cos}\theta} \\ $$$$\mathrm{thx}\:=\frac{\mathrm{shx}}{\mathrm{chx}}\:=\frac{\mathrm{tan}\theta}{\frac{\mathrm{1}}{\mathrm{cos}\theta}}\:=\mathrm{cos}\theta×\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}\:=\mathrm{sin}\theta \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com