Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 97143 by Ar Brandon last updated on 06/Jun/20

Given f(x)=((ax^2 +bx+c)/x) and C_f  its graph;  Determine the real numbers a, b, and c such that  C_f  passes through the points A(1;2); B(−4;8) and has  a tangent parallel to the x−axis at x=2.

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}}{\mathrm{x}}\:\mathrm{and}\:\mathcal{C}_{\mathrm{f}} \:\mathrm{its}\:\mathrm{graph}; \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{a},\:\mathrm{b},\:\mathrm{and}\:\mathrm{c}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathcal{C}_{\mathrm{f}} \:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{1};\mathrm{2}\right);\:\mathrm{B}\left(−\mathrm{4};\mathrm{8}\right)\:\mathrm{and}\:\mathrm{has} \\ $$$$\mathrm{a}\:\mathrm{tangent}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{at}\:\mathrm{x}=\mathrm{2}. \\ $$

Answered by MJS last updated on 06/Jun/20

just solve the linear system   { ((f(1)=2)),((f(−4)=8)),((f′(2)=0)) :}  for a, b, c  ⇒  a=−(3/5); b=5; c=−((12)/5)

$$\mathrm{just}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{system} \\ $$$$\begin{cases}{{f}\left(\mathrm{1}\right)=\mathrm{2}}\\{{f}\left(−\mathrm{4}\right)=\mathrm{8}}\\{{f}'\left(\mathrm{2}\right)=\mathrm{0}}\end{cases} \\ $$$$\mathrm{for}\:{a},\:{b},\:{c} \\ $$$$\Rightarrow \\ $$$${a}=−\frac{\mathrm{3}}{\mathrm{5}};\:{b}=\mathrm{5};\:{c}=−\frac{\mathrm{12}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com