Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 96928 by bobhans last updated on 05/Jun/20

69x ≡ 1 (mod 31)   solve for x

$$\mathrm{69}{x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{31}\right)\: \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$

Commented by RAMANA last updated on 05/Jun/20

send the answer please

$${send}\:{the}\:{answer}\:{please} \\ $$

Answered by MAB last updated on 05/Jun/20

69x≡1[31]  69x−31×2×x≡1[31]  7x≡1[31]  we have 31 is prime and 7x≡1[31]   and the only inverse of 7 in the class 31  is 9 ( 7×9=63=2×31+1)  therfore x≡ [31]

$$\mathrm{69}{x}\equiv\mathrm{1}\left[\mathrm{31}\right] \\ $$$$\mathrm{69}{x}−\mathrm{31}×\mathrm{2}×{x}\equiv\mathrm{1}\left[\mathrm{31}\right] \\ $$$$\mathrm{7}{x}\equiv\mathrm{1}\left[\mathrm{31}\right] \\ $$$${we}\:{have}\:\mathrm{31}\:{is}\:{prime}\:{and}\:\mathrm{7}{x}\equiv\mathrm{1}\left[\mathrm{31}\right]\: \\ $$$${and}\:{the}\:{only}\:{inverse}\:{of}\:\mathrm{7}\:{in}\:{the}\:{class}\:\mathrm{31} \\ $$$${is}\:\mathrm{9}\:\left(\:\mathrm{7}×\mathrm{9}=\mathrm{63}=\mathrm{2}×\mathrm{31}+\mathrm{1}\right) \\ $$$${therfore}\:{x}\equiv\:\left[\mathrm{31}\right] \\ $$

Answered by 1549442205 last updated on 06/Jun/20

we have 69x−1=31a(a∈Z)⇔a=((69x−1)/(31))=2x+((7x−1)/(31))  ⇒7x−1=31b(b∈Z)⇔x=((31b+1)/7)=4b+((3b+1)/7)  ⇒3b+1=7c(c∈Z)⇔b=((7c−1)/3)=2c+((c−1)/3)  ⇒c−1=3d(d∈Z)⇒c=3d+1.From this we get  b=2c+d=7d+2⇒x=4b+c=31d+9  Thus,x=31d+9 or x=9(mod31)

$$\mathrm{we}\:\mathrm{have}\:\mathrm{69x}−\mathrm{1}=\mathrm{31a}\left(\mathrm{a}\in\mathbb{Z}\right)\Leftrightarrow\mathrm{a}=\frac{\mathrm{69x}−\mathrm{1}}{\mathrm{31}}=\mathrm{2x}+\frac{\mathrm{7x}−\mathrm{1}}{\mathrm{31}} \\ $$$$\Rightarrow\mathrm{7x}−\mathrm{1}=\mathrm{31b}\left(\mathrm{b}\in\mathbb{Z}\right)\Leftrightarrow\mathrm{x}=\frac{\mathrm{31b}+\mathrm{1}}{\mathrm{7}}=\mathrm{4b}+\frac{\mathrm{3b}+\mathrm{1}}{\mathrm{7}} \\ $$$$\Rightarrow\mathrm{3b}+\mathrm{1}=\mathrm{7c}\left(\mathrm{c}\in\mathbb{Z}\right)\Leftrightarrow\mathrm{b}=\frac{\mathrm{7c}−\mathrm{1}}{\mathrm{3}}=\mathrm{2c}+\frac{\mathrm{c}−\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{c}−\mathrm{1}=\mathrm{3d}\left(\mathrm{d}\in\mathbb{Z}\right)\Rightarrow\boldsymbol{\mathrm{c}}=\mathrm{3}\boldsymbol{\mathrm{d}}+\mathrm{1}.\mathrm{From}\:\mathrm{this}\:\mathrm{we}\:\mathrm{get} \\ $$$$\boldsymbol{\mathrm{b}}=\mathrm{2}\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{d}}=\mathrm{7}\boldsymbol{\mathrm{d}}+\mathrm{2}\Rightarrow\boldsymbol{\mathrm{x}}=\mathrm{4}\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=\mathrm{31}\boldsymbol{\mathrm{d}}+\mathrm{9} \\ $$$$\boldsymbol{\mathrm{Thus}},\boldsymbol{\mathrm{x}}=\mathrm{31}\boldsymbol{\mathrm{d}}+\mathrm{9}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{x}}=\mathrm{9}\left(\boldsymbol{\mathrm{mod}}\mathrm{31}\right) \\ $$

Answered by mr W last updated on 06/Jun/20

69x=31n+1  69x−31n=1  ⇒x=31k+9 ⇒x≡9 mod 31    see also Q44704, Q19198

$$\mathrm{69}{x}=\mathrm{31}{n}+\mathrm{1} \\ $$$$\mathrm{69}{x}−\mathrm{31}{n}=\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{31}{k}+\mathrm{9}\:\Rightarrow{x}\equiv\mathrm{9}\:{mod}\:\mathrm{31} \\ $$$$ \\ $$$${see}\:{also}\:{Q}\mathrm{44704},\:{Q}\mathrm{19198} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com