Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 96749 by student work last updated on 04/Jun/20

how we can calclate triple factorial?

$$\mathrm{how}\:\mathrm{we}\:\mathrm{can}\:\mathrm{calclate}\:\mathrm{triple}\:\mathrm{factorial}? \\ $$

Answered by Rio Michael last updated on 04/Jun/20

The tripple factorial is defined as    n!!! = n(n−3)(n−6)...3,  n(n−3)(n−6)...4∗1  or n(n−3)(n−6)...5∗2  depending on the numbers congruency  so n!^((a))  should be defined as the product of numbers congruent to n(mod a)  as examples :   8 (mod 3) ≡ 5 (mod 3) ≡ 2 (mod 3)  n!^((a))  =n(n−a)(n−2a)...(m +2a)(m + a)m ,where m is   the smallest possible number allowed by the factorial.

$$\mathrm{The}\:\mathrm{tripple}\:\mathrm{factorial}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\: \\ $$$$\:{n}!!!\:=\:{n}\left({n}−\mathrm{3}\right)\left({n}−\mathrm{6}\right)...\mathrm{3},\:\:{n}\left({n}−\mathrm{3}\right)\left({n}−\mathrm{6}\right)...\mathrm{4}\ast\mathrm{1} \\ $$$$\mathrm{or}\:{n}\left({n}−\mathrm{3}\right)\left({n}−\mathrm{6}\right)...\mathrm{5}\ast\mathrm{2}\:\:\mathrm{depending}\:\mathrm{on}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{congruency} \\ $$$$\mathrm{so}\:{n}!^{\left({a}\right)} \:\mathrm{should}\:\mathrm{be}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{numbers}\:\mathrm{congruent}\:\mathrm{to}\:{n}\left(\mathrm{mod}\:{a}\right) \\ $$$$\mathrm{as}\:\mathrm{examples}\::\: \\ $$$$\mathrm{8}\:\left(\mathrm{mod}\:\mathrm{3}\right)\:\equiv\:\mathrm{5}\:\left(\mathrm{mod}\:\mathrm{3}\right)\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${n}!^{\left({a}\right)} \:={n}\left({n}−{a}\right)\left({n}−\mathrm{2}{a}\right)...\left({m}\:+\mathrm{2}{a}\right)\left({m}\:+\:{a}\right){m}\:,\mathrm{where}\:{m}\:\mathrm{is}\: \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{allowed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{factorial}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com