Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 96217 by john santu last updated on 30/May/20

(dy/dx) = (((y^2 −x^2 +y)/x))

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\left(\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} +\mathrm{y}}{\mathrm{x}}\right)\: \\ $$

Answered by bobhans last updated on 30/May/20

set y = xz ⇒ (dy/dx) = z + x (dz/dx)  z + x (dz/dx) = ((x^2 z^2 −x^2 + xz)/x)  z + x (dz/dx) = xz^2 −x+ z ⇒ x (dz/dx) = x(z^2 −1)  (dz/(z^2 −1)) = dx ⇒ ∫ (1/(z+1))−(1/(z−1)) dz = −2 dx  ln ∣((z+1)/(z−1))∣ = −2x + c ⇒ ((z+1)/(z−1)) = Ce^(−2x)   ((y+x)/(y−x)) = Ce^(−2x)

$$\mathrm{set}\:\mathrm{y}\:=\:{xz}\:\Rightarrow\:\frac{{dy}}{{dx}}\:=\:{z}\:+\:{x}\:\frac{{dz}}{{dx}} \\ $$$${z}\:+\:{x}\:\frac{{dz}}{{dx}}\:=\:\frac{{x}^{\mathrm{2}} {z}^{\mathrm{2}} −{x}^{\mathrm{2}} +\:{xz}}{{x}} \\ $$$${z}\:+\:{x}\:\frac{{dz}}{{dx}}\:=\:{xz}^{\mathrm{2}} −{x}+\:{z}\:\Rightarrow\:{x}\:\frac{{dz}}{{dx}}\:=\:{x}\left({z}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\frac{{dz}}{{z}^{\mathrm{2}} −\mathrm{1}}\:=\:{dx}\:\Rightarrow\:\int\:\frac{\mathrm{1}}{{z}+\mathrm{1}}−\frac{\mathrm{1}}{{z}−\mathrm{1}}\:{dz}\:=\:−\mathrm{2}\:{dx} \\ $$$$\mathrm{ln}\:\mid\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}}\mid\:=\:−\mathrm{2}{x}\:+\:{c}\:\Rightarrow\:\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}}\:=\:{Ce}^{−\mathrm{2}{x}} \\ $$$$\frac{{y}+{x}}{{y}−{x}}\:=\:{Ce}^{−\mathrm{2}{x}} \: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com