Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 94739 by 174 last updated on 20/May/20

Commented by i jagooll last updated on 20/May/20

(1) ∫ ((cos x dx)/(3sin x−2(1−sin^2 x)))=  ∫ ((d(sin x))/(2sin^2 x+3sin x−2)) = ∫ (du/((2u−1)(u+2)))  now it easy to solve

$$\left(\mathrm{1}\right)\:\int\:\frac{\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}}{\mathrm{3sin}\:\mathrm{x}−\mathrm{2}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)}= \\ $$$$\int\:\frac{\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{3sin}\:\mathrm{x}−\mathrm{2}}\:=\:\int\:\frac{\mathrm{du}}{\left(\mathrm{2u}−\mathrm{1}\right)\left(\mathrm{u}+\mathrm{2}\right)} \\ $$$$\mathrm{now}\:\mathrm{it}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$

Commented by PRITHWISH SEN 2 last updated on 20/May/20

3)put sinx=(√2)t⇒cosxdx=(√2) dt  ∫(dt/((√2)(1+t^2 ))) = (1/(√2)) tan^(−1) (((sin x)/(√2)) )+C  4) ∫sec^2 xdx+∫tan^2 x dx = 2∫sec^2 x dx −∫dx  = 2tan x−x+C  5)∫[x+ln(e−x)]dx= (x^2 /2)+xln(e−x)+∫(x/(e−x))dx  = (x^2 /2)+xln(e−x)−eln(e−x)−x+C

$$\left.\mathrm{3}\right)\mathrm{put}\:\mathrm{sinx}=\sqrt{\mathrm{2}}\mathrm{t}\Rightarrow\mathrm{cosxdx}=\sqrt{\mathrm{2}}\:\mathrm{dt} \\ $$$$\int\frac{\mathrm{dt}}{\sqrt{\mathrm{2}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\mathrm{x}}{\sqrt{\mathrm{2}}}\:\right)+\mathrm{C} \\ $$$$\left.\mathrm{4}\right)\:\int\mathrm{sec}^{\mathrm{2}} \mathrm{xdx}+\int\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=\:\mathrm{2}\int\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:−\int\mathrm{dx} \\ $$$$=\:\mathrm{2tan}\:\mathrm{x}−\mathrm{x}+\mathrm{C} \\ $$$$\left.\mathrm{5}\right)\int\left[\mathrm{x}+\mathrm{ln}\left(\mathrm{e}−\mathrm{x}\right)\right]\mathrm{dx}=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{xln}\left(\mathrm{e}−\mathrm{x}\right)+\int\frac{\mathrm{x}}{\mathrm{e}−\mathrm{x}}\mathrm{dx} \\ $$$$=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{xln}\left(\mathrm{e}−\mathrm{x}\right)−\mathrm{eln}\left(\mathrm{e}−\mathrm{x}\right)−\mathrm{x}+\mathrm{C} \\ $$

Answered by Rio Michael last updated on 20/May/20

∫(dx/(e^(−x)  + e^x ))  = ∫(e^x /(1 + e^(2x) )) dx = ∫(1/(1 + e^(2x) )) e^x dx  let u = e^x  ⇒ du = e^x  dx  ⇒ ∫(1/(1+ e^(2x) )) e^x dx = ∫(1/(1 + u^2 )) du = tan^(−1)  u + k = tan^(−1) e^x   + k

$$\int\frac{{dx}}{{e}^{−{x}} \:+\:{e}^{{x}} }\:\:=\:\int\frac{{e}^{{x}} }{\mathrm{1}\:+\:{e}^{\mathrm{2}{x}} }\:{dx}\:=\:\int\frac{\mathrm{1}}{\mathrm{1}\:+\:{e}^{\mathrm{2}{x}} }\:{e}^{{x}} {dx} \\ $$$$\mathrm{let}\:{u}\:=\:{e}^{{x}} \:\Rightarrow\:{du}\:=\:{e}^{{x}} \:{dx} \\ $$$$\Rightarrow\:\int\frac{\mathrm{1}}{\mathrm{1}+\:{e}^{\mathrm{2}{x}} }\:{e}^{{x}} {dx}\:=\:\int\frac{\mathrm{1}}{\mathrm{1}\:+\:{u}^{\mathrm{2}} }\:{du}\:=\:\mathrm{tan}^{−\mathrm{1}} \:{u}\:+\:{k}\:=\:\mathrm{tan}^{−\mathrm{1}} {e}^{{x}} \:\:+\:{k} \\ $$

Answered by i jagooll last updated on 20/May/20

(2) ∫ (e^x /(1+e^(2x) )) dx = ∫ (du/(1+u^2 )) , [ u = e^x  ]  = tan^(−1) (u) + c = tan^(−1) (e^x ) + c

$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{2x}} }\:\mathrm{dx}\:=\:\int\:\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:,\:\left[\:\mathrm{u}\:=\:\mathrm{e}^{\mathrm{x}} \:\right] \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{u}\right)\:+\:\mathrm{c}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{e}^{\mathrm{x}} \right)\:+\:\mathrm{c}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com