Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 94456 by Abdulrahman last updated on 18/May/20

log_x 16+log_(16) x=log_(512) x+log_x 512  x=?

$$\mathrm{log}_{\mathrm{x}} \mathrm{16}+\mathrm{log}_{\mathrm{16}} \mathrm{x}=\mathrm{log}_{\mathrm{512}} \mathrm{x}+\mathrm{log}_{\mathrm{x}} \mathrm{512} \\ $$$$\mathrm{x}=? \\ $$

Answered by john santu last updated on 19/May/20

4 (log _x (2))+(1/4)(log_2  (x)) =   9(log _x (2))+(1/9)(log _2 (x))  ⇒ 5(log _x (2)) = (5/(36)) (log _2 (x))  36(log _x (2)) = (1/(log _x (2)))   { ((log _x (2) = (1/6)⇒(1/(log _2 (x))) = (1/6);x=64)),((log _x (2) = −(1/6)⇒(1/(log _2 (x))) = −(1/6))) :}  x = (1/(64))

$$\mathrm{4}\:\left(\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{log}_{\mathrm{2}} \:\left({x}\right)\right)\:=\: \\ $$$$\mathrm{9}\left(\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\right)+\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{log}\:_{\mathrm{2}} \left({x}\right)\right) \\ $$$$\Rightarrow\:\mathrm{5}\left(\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\right)\:=\:\frac{\mathrm{5}}{\mathrm{36}}\:\left(\mathrm{log}\:_{\mathrm{2}} \left({x}\right)\right) \\ $$$$\mathrm{36}\left(\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\right)\:=\:\frac{\mathrm{1}}{\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)} \\ $$$$\begin{cases}{\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{\mathrm{6}}\Rightarrow\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \left({x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{6}};{x}=\mathrm{64}}\\{\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{6}}\Rightarrow\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \left({x}\right)}\:=\:−\frac{\mathrm{1}}{\mathrm{6}}}\end{cases} \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{64}} \\ $$

Commented by Abdulrahman last updated on 19/May/20

very good  but i didnt know in two final lines

$$\mathrm{very}\:\mathrm{good} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{didnt}\:\mathrm{know}\:\mathrm{in}\:\mathrm{two}\:\mathrm{final}\:\mathrm{lines} \\ $$

Commented by i jagooll last updated on 19/May/20

nice solution

$$\mathrm{nice}\:\mathrm{solution} \\ $$

Commented by i jagooll last updated on 19/May/20

why sir?   (log _x (2))^2 = (1/(36)) . let log _x (2) =p  p^2 −(1/(36)) = 0  (p−(1/6))(p+(1/6)) = 0 sir

$$\mathrm{why}\:\mathrm{sir}?\: \\ $$$$\left(\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\right)^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{36}}\:.\:{let}\:\mathrm{log}\:_{{x}} \left(\mathrm{2}\right)\:={p} \\ $$$${p}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{36}}\:=\:\mathrm{0} \\ $$$$\left({p}−\frac{\mathrm{1}}{\mathrm{6}}\right)\left({p}+\frac{\mathrm{1}}{\mathrm{6}}\right)\:=\:\mathrm{0}\:{sir} \\ $$

Commented by Abdulrahman last updated on 19/May/20

thanks alot now i got it

$$\mathrm{thanks}\:\mathrm{alot}\:\mathrm{now}\:\mathrm{i}\:\mathrm{got}\:\mathrm{it}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com